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Abstract

High power applications require an accurate calculation of the losses on overmoded
corrugated cylindrical transmission lines. Previous assessments of power loss on these
lines have not considered beam polarization or higher order mode effects. This thesis
will develop a theory of transmission that includes the effect of linearly polarized
higher order modes on power loss in overmoded corrugated transmission line systems.

This thesis derives the linearly polarized basis set of modes for corrugated cylin-
drical waveguides. These modes are used to quantify the loss in in overmoded trans-
mission line components, such as a gap in waveguide or a 90◦ miter bend. The
dependence of the loss in the fundamental mode on the phase of higher order modes
(HOMs) was investigated. In addition, the propagation of a multi-mode beam after
the waveguide was quantified, and it was shown that if two modes with azimuthal
(m) indices that differ by one propagate in the waveguide, the resultant centroid and
the tilt angle of radiation at the guide end are related through a constant of the
motion. These theoretical calculations are useful for high-power applications, such as
the electron cyclotron heating in plasma fusion reactors.

In addition, this thesis develops a low-power S-Parameter Response (SPR) tech-
nique to accurately measure the loss in ultra-low loss overmoded waveguide compo-
nents. This technique is used to measure the loss of components manufactured to
ITER (an experimental fusion reactor) specifications, operated at 170 GHz with a
diameter of 63.5 mm and quarter-wavelength corrugations. The loss in a miter bend
was found to be 0.022±0.08 dB. This measurement is in good agreement with theory,
which predicts 0.027 dB loss per miter bend, and past measurements [18]. The SPR
was used to measure the loss in a gap of waveguide and the results were in good
agreement with the well-established theoretical loss due to gap, which demonstrates
the accuracy of the SPR technique. For both of these measurements, a baseline anal-
ysis determined the effects of a small percentage (1–2%) of higher order modes in the
system.
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Chapter 1
Introduction

Transmission lines are used to transport power in electromagnetic waves from one

point to another. Though this may seem a simple task, high power experiments

require particular considerations for the attenuation characteristics of their transmis-

sion lines to preserve the integrity of the system. Simple smooth wall cylindrical

waveguides are useful for low-power experiments, but, when considering the trans-

mission of power on the order of megawatts for meter-length distances, traditional

methods will be insufficient due to large attenuation, mode conversion, the possibil-

ity of electromagnetic breakdowns, and high heating which can lead to failures in

the transmission system. Overmoded metallic circumferentially corrugated cylindri-

cal waveguides have been shown to have low attenuation over long distances, but

may result in high amounts of mode conversion and large losses due to misalignment

or manufacturing errors. Decreasing the attenuation and mode conversion in high

power experiments is necessary for the integrity of the transmission system as well as

the success of the experiment, particularly when transmission over long distances is

necessary.

1.1 Motivation

Recently, continuous high-power sources have been developed for high frequencies.

Specifically, developments in gyrotons have made the devices capable of producing

21



power in the range of megawatts for frequencies up to 170 GHz. For use in experiments

such as plasma heating, this radiation must often be transported long distances, many

tens of meters. To satisfy experiment requirements and transport the power safely,

oversized corrugated metallic waveguides are used for the transmission line system.

In addition to plasma heating, oversized corrugated waveguides are useful for plasma

diagnostics, radar, materials heating, and spectroscopy.

High power, high frequency experiments offer a unique problem for transmission

lines. In contrast, low power, high frequency experiments may be satisfied with small

fundamental single-mode waveguides because there is no possibility of breakdown

and losses, though high, result in low ohmic heating on the line. Also high power,

low frequency experiments can also be satisfied with fundamental mode waveguides

because the size of the waveguide increases inversely with frequency, allowing for

larger losses without a failure of the system. However, with the combination of high

power and high frequency, fundamental waveguides are simply too small to handle the

power at hand and are not adequate for experimental uses due to significant power

losses leading to failure in the transmission line system and dangerous operation

conditions prone to breakdown and damaged equipment. To operate in high power

conditions, overmoded waveguides are used for their low attenuation characteristics.

For oversized smooth-wall circular waveguide, the lowest loss mode is TE01, which is

not the fundamental mode. This property leads to the danger of mode conversion

to lower order modes that are hard to filter out. Also, the TE01 mode is degenerate

with the TM11 mode, increasing the possibility of mode conversion to an undesirable

mode. On the other hand, corrugated cylindrical waveguides have the lowest loss in

the fundamental HE11 mode, reducing the concerns for mode conversion to degenerate

and lower order modes. In addition, corrugated cylindrical walls with a quarter-

wavelength depth of circumferential corrugations offer less attenuation than smooth-

wall waveguides due to the boundary conditions imposed by the corrugations. The

geometry of corrugated cylindrical waveguides are shown in Figure 1-1, for reference.

In general, the inner notches, defined by d, w1, and w2, are on the order of λ. To

avoid Bragg reflector characteristics the periodicity, w1, is approximately λ/3. The
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Figure 1-1: (a) A cylindrical circumferentially corrugated waveguide with a radius of
a. The corrugations are defined by w1, w2, and d. For low loss characteristics the
corrugation depth is d = λ/4. (b) An illustration of the variables in the cylindrical
geometry.

radius, a, is much greater than λ for an overmoded waveguide.

Due to the high power experiments that they will be used for, the losses in over-

moded corrugated waveguides must be sufficiently calculated and experimentally an-

alyzed. First introduced in 1970 for communication applications, overmoded corru-

gated cylindrical waveguides for high power, high frequency experiments offer low

losses in the fundamental and lower order modes that propagate in the waveguide.

Analytical and experimental calculations have estimated the straight-length attenua-

tion in corrugated waveguides to be smaller than equivalent smooth wall waveguides

and, even, negligibly small for most applications if the waveguide corrugations are

properly configured for the desired transmission frequency. In analyzing the loss as-

sociated with corrugated waveguides, it is useful to interpret the modes present in a

waveguide and the field patterns which result. In addition, certain waveguide compo-

nents and configurations offer more insight into the losses that will result in practical

transmission line systems. Particularly the loss associated with 90◦ miter bends and

gaps in the waveguide will be used in this thesis to quantify the loss characteristics

of overmoded corrugated circular transmission lines.

1.2 Review of Corrugated Cylindrical Waveguides

This review of the literature will discuss the development of corrugated cylindrical

waveguides and their attenuation characteristics. The literature is split into three
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sections which discuss the characteristics of overmoded corrugated cylindrical waveg-

uides: the initial development and straight-length attenuation analysis, the develop-

ment of modes and their field patterns in waveguides, and the theoretical calculations

and experimental measurements of loss in 90◦ miter bends.

1.2.1 Straight Waveguide Attenuation

Overmoded corrugated waveguides were first introduced for millimeter wave transmis-

sion because of their low attenuation for the fundamental mode. This attenuation was

seen to be lower than the smooth-wall fundamental modes [8]. Clarricoats patented

the design [2] and experimentally measure the loss in straight sections of corrugated

waveguide [4], [28]. Later designs specified overmoded transmission lines as being

necessary for high power transmission due to wall heating and smaller attenuation

parameters and further refined the waveguide design parameters for low attenuation.

In a discussion on flared corrugated feeds for antennas, [8] reported that the

attenuation in corrugated circular transmission lines was theoretically smaller than

the fundamental mode in smooth-wall transmission lines. Previously, fundamental

mode propagation in smooth wall transmission lines had been the standard for low

attenuation. This small transmission in corrugated waveguides was due to the wall

effects in hybrid modes and was significantly less than the lowest loss smooth-wall

waveguides modes. This is likely due to the fact that the HE11 mode, the fundamental

mode for corrugated waveguides, has power concentrated in the center and small fields

at the walls of the waveguide, whereas TE01 and TM11, the lowest loss modes for

smooth wall waveguides, have power that is off-center and more susceptible to losses

due to fields present at the walls. For d = λ/4 (see Figure 1-1), the wall requires

balanced hybrid modes and the azimuthal magnetic fields vanish at the walls. These

conditions result in about 0.0004–0.001 dB/m theoretical attenuation in the 10–20

GHz range for waveguides operating in the fundamental mode with d ≈ λ.

Expanding on the results from [8], [4] reports 30% lower attenuation in the funda-

mental HE11 mode for corrugated waveguides than TE01 and TM11 modes for smooth

wall waveguides. These results were shown for 20–80 mm diameter waveguides for

24



4–20 GHz waves. In addition, overmoded, or oversized, corrugated cylindrical waveg-

uides (i.e. waveguides with the ability to propagate at least three modes) were shown

to have less attenuation per meter than overmoded smooth wall circular, single-mode

smooth wall circular, and single mode rectangular waveguides. This result indicates

that overmoded corrugated waveguides are significantly better for high power ap-

plications than any alternative methods available. The design for low attenuation

corrugated waveguides was also patented by Clarricoats with similar losses reported

[2].

Experimental validation of [4] was offered by [28]. Over a range from 8–11 GHz,

the HE11 mode in a corrugated waveguide is shown to have about 4–5 dB/km atten-

uation, with good agreement between experimental and theoretical results. Similar

fundamental smooth-wall waveguide modes have attenuation from 4–14 dB/km with

single-mode propagation. However direct comparison between these two waveguides

is unfavorable to the corrugated waveguide because it is overmoded. Overmoded

smooth wall waveguides perform worse than their corrugated counterparts, indicat-

ing another significant advantage of the overmoded corrugated waveguide design.

A more complete discussion of the modes and attenuation in corrugated waveg-

uides is discussed in theory and with experimental conclusions in [6] and [7]. The

modes are described as being standing waves in the corrugations which impose bound-

ary conditions on the modes propagating in the waveguide. Theoretically derived and

experimentally shown, the depth of the waveguide is specified to be d = λ/4 for low

attenuation values because this depth results in zero field conditions on the propagat-

ing HE11 mode at the boundary. Since most loss occurs at the walls, small fields at

the wall are theorized and experimentally shown to lead to smaller attenuations. In

addition, the attenuation is shown experimentally to be insensitive to small changes

in the widths of corrugations, so long as the corrugations occur periodically at values

close to λ.

To compare attenuation characteristics, [15] discusses the characteristics of the

HE11 mode in different types of waveguide. He discusses two points for characterizing

the HE11 mode: that the field is polarized in one direction and that the electric
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and magnetic field at the boundary is essentially zero. For corrugated waveguides,

the corrugations act in the same way as a dielectric surface, imposing a boundary

condition on the propagating HE11 mode. Again, in the case of quarter-wavelength

corrugations, the wall effects cause the HE11 mode to reduce to zero at the corrugation

wall. Approximate field expressions for the HE11 mode in a corrugated waveguide (as

well as other waveguides) are derived, taking into account the wall effects due to

corrugations (or other waveguide characteristics).

The propagation and mode coupling in corrugated waveguides is discussed com-

pletely by [11], which is often cited as the definitive source for corrugated waveguides.

This article states that overmoded waveguides are used to reduce loss and prevent

breakdown in high power applications. It formulates the hybrid, HE and EH, modes

for corrugated guides, and discusses the low attenuation found in the HE11 mode, as

well as other HEmn, EHmn, TE0n and TM0n modes in corrugated waveguides. An

expression for the coupling coefficients between modes is also analytically expressed,

this relates how the modes are generated and their relations. This chapter by Doane,

[11], has become a common reference for the theory behind corrugated waveguide

modes and their attenuation parameters due to its completeness.

To validate analytical analysis, [1] discusses experimental loss measurements of

corrugated waveguides. A waveguide system consisting of 30 m of 63.5 mm diameter

(31.75 mm radius) corrugated waveguide and 7 miter bends was installed on an elec-

tron cyclotron emission measurement system. The system operated with multimode

transmission and frequencies from 75–575 GHz. Negligible Ohmic loss was recorded

for single and multimode transmission at 140 and 250 GHz, respectively. However,

large losses were seen to occur due to mode conversion in completely overmoded

waveguide systems, this conversion was mostly due to miter bends in the system.

In a discussion on high power microwave components, [34] emphasizes the im-

portance of overmoded corrugated waveguides and miter bends to high power, high

frequency systems. Once again, the propagation of the HE11 mode is discussed and

approximations are made to derive an expression for the attenuation in straight sec-

tions of waveguide. In particular, approximations are made to define the HE11 mode
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as

Ey = E0J0(X01r/a) (1.1)

Ex ≈ 0 (1.2)

Ez ≈ 0, (1.3)

where J0 is the zeroth order Bessel function of the first kind and X01 is the first root

of the zeroth Bessel Function. The details apparent in this expression for electric field

have already been discussed in previous works, however the simple approximation of

the field pattern is useful for a quick analysis of the HE11 mode. Quasi-optical miter

bends are also discussed quickly as having a low-attenuation 90◦ miter bend, these

will be discussed later. In addition, the loss due to gaps in a waveguide is discussed

with an approximate analytical expression given for the power loss.

1.2.2 Modes in Corrugated Cylindrical Waveguide

An important secondary aspect of overmoded waveguides, in general, is the descrip-

tion of the modes that are contained within the waveguide. These modes help to define

the attenuation. Previously, it was thought that all modes functioned independently

of each other [24]. However, it has since been understood that the beating between

modes causes fluctuations in attenuation, particularly in quasi-optical transmission

line components like miter bends and polarizers. In the previous section, only loss

in the fundamental HE11 mode was discussed, but overmoded waveguides inherently

propagate higher order modes, which can amount to a large source of attenuation

for the fundamental mode, and, therefore, a large loss of power when calculating the

transmission efficiency of a corrugated circular overmoded waveguide.

The propagation and radiation characteristics of cylindrical corrugated waveguides

was first developed in [5]. This book chapter defines the HE1n modes with all of

the corresponding field patterns for corrugated guides and the cut off frequencies of

the modes. It also reinforces the low-attenuation calculations for straight waveguide

propagation, expanding the argument for higher order modes. Though this is similar
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Figure 1-2: The experimental approach for [26] to measure the loss in 124 m of
straight overmoded corrugated waveguide.

to the previous work describing attenuation in circular corrugated waveguides, the

definition of higher order mode field patterns and attenuation characteristics expands

the theoretical understanding of overmoded waveguides.

The field patterns of hybrid modes, HEmn, and wall functions of corrugated cylin-

drical waveguides are fully defined in [9]. The formulation of the hybrid modes will be

discussed further in Chapter 2. Only slight approximations are taken, and the model

of the corrugations in the waveguide acting as a dielectric which imposes boundary

conditions, i.e. wall functions on the propagating modes are enforced. The HE modes

for several types of waveguides are discussed, and the similarities in analysis indicate

that corrugations result in low losses partly because of the fields approaching zero at

the wall boundaries.

Experimental measurements for loss and higher order mode content were per-

formed in [26], which measured the loss due to 62 m of straight overmoded corrugated

waveguide. The waveguide was 8.89 cm in diameter and was operated at 140 GHz.

Since a reflectometry method was used, they attempted to experimentally measure

the loss in a transmission length of 124 m (twice the actual distance), see Figure

1-2. Unfortunately, the loss was too small for measurements and was inferred to be

less than 2 dB/km and negligible. Interestingly, the beating between HE11 and HE21

modes was also observed during measurements, which causes a group velocity delay

that sinusoidally varies with transmission distance. This indicates that the modes do

not propagate completely independent of each other. Two modes interact when prop-

agating in the same transmission line, and, moreover, there is a dependence between

their interaction characteristics and the phase between the modes.

Precise definitions of all modes in a waveguide, with corresponding field patterns
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appear in [25]. Numerical calculations of the coupling of a tilted Gaussian beam into

a waveguide are primarily discussed and indicate the losses due to insertion of a beam

into the waveguide. This analysis provides an analytical formula for the power loss

due to coupling with an angle. As an example, a waveguide with a diameter of 8.89 cm

operating at 168 GHz is shown to need an input with less than 0.1◦ tilt and 2.9 mm

offset to have less than 1% mode conversion. This application indicates the precision

necessary when operating in the fundamental mode of overmoded waveguides

In order to generate the HE11 mode in a waveguide, Gaussian beams are used as

input. [29] discusses the coupling of Gaussian beams produced by a gyrotron into

corrugated waveguides operating at 110 GHz. The power that couples into the HE11

mode is dependent on the parameters of the Gaussian beam: ellipticity, offset from

the center of the guide, distance from the radiation point of the Gaussian beam, angle

of beam propagation. Ideally, the beam is circular with no tilt or offset. In addition,

there is a certain beam radius, w0, which leads to an optimum coupling to the HE11

mode which is about w0 = 0.64a, where a is the radius of the waveguide, and leads

to 97% coupling into the HE11 mode for a perfect gaussian beam.

1.2.3 Miter Bends

A common waveguide component in overmoded systems is a miter bend. A miter bend

is a quasi-optical passive component in waveguide which is used to change the propa-

gation direction of the wave by 90◦. For overmoded corrugated cylindrical waveguide

an optical mirror is placed at 45◦ to the direction of propagation. These components

are necessary when practical experiments are considered where high frequency waves

must be transferred from one place to another, typically over a distance of tens of

meters, and certain obstacles must be avoided during the propagation. Though the

loss in these components has been experimentally and theoretically recorded to be

low, less than 0.1 dB (depending on signal and waveguide parameters), the loss is

relatively high when compared to other losses on the transmission line and the high

power nature of the systems under test. For this reason, it is necessary to accurately

quantify the losses in a miter bend.
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A simplified theoretical calculation to quantify the loss in a miter bend is presented

by [23]. The loss in the waveguide may be estimated as a set of two-dimensional prob-

lems, by taking advantage of the quasi-optical mirror and electromagnetic boundary

conditions. This decomposition process will be described in more detail in Chapter 3.

The theoretical loss calculated through technique corresponded well to experiments

with λ/a = 0.5 (considered large at the time).

Marcatili’s theory for calculating the loss in a miter bend in smooth wall waveguide

[23] was expanded for a corrugated waveguide propagating the HE11 mode in [13].

In this case, the miter bend is approximated as a gap in the waveguide. To account

for the approximation, the loss due to a miter bend is estimated as half of the loss

due to a gap in the waveguide where the gap length is equivalent to the diameter of

the waveguide; again, this theory will be discussed in more detail in Chapter 3. The

loss due to a miter bend for the HE11 mode in a corrugated waveguide is found to

be approximately 1.7(λ/a)3/2, where λ is the wavelength and a is the radius of the

guide. The theory was compared with good agreement to experimental measurements

of mode mixtures propagating across a gap at 110 GHz in 1.25 inch radius waveguide.

In this case, the theoretical loss for the HE11 mode was found to be 0.06 dB per miter

bend.

Expanding on the gap theory discussed in [13], [35] calculates the transmission

losses in overmoded waveguide gaps due to TE, TM, HE, and EH modes through the

use of a scattering matrix code. Experimentally, the losses due to a gap in smooth-

wall waveguide of radius 1.39 cm at 28 GHz were measured. These measurements

were in good agreement with the scattering matrix code and analytical calculations.

In addition, [32] calculates and experimentally measures the losses due to a gap,

and maintains that a gap is an approximation of a 90◦ miter bend. Due to mode

combinations, it was recognized that the loss in the gap for HE11 can be minimized

by the appropriate addition of higher order modes. This analysis led to the creation

of an HE11 mode filter which takes advantage of mode conversion due to a gap and

was tested at low power for a 31.75 mm diameter corrugated waveguide operating at

84 GHz, and resulted in 99.3% mode purity.
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In order to calculate the loss due to a miter bend, [33] models a miter bend as a gap

with a small modification which takes into account the fact that the miter bend is not

exactly open on top and takes away the approximated 2-dimensional symmetry of the

problem while still eliminating the 90◦ bend from the analysis. A mode propagating

through the modified gap can be calculated using fast Fourier transform techniques.

This method approximates the loss in a miter bend to be about 0.022 dB for the HE11

mode, with a waveguide of 63.5 mm diameter at 170 GHz. In addition, the effects of

parasitic higher order modes on the system were considered. With a 2-mode input,

the loss in the miter bend is dependent on the relative phase between the two modes.

However, the average loss all relative phases is still 0.022 dB per bend for the HE11

mode.

Experimentally, the loss of a miter bend designed for the ITER project and built

by General Atomics was measured in [18]. Through low power testing of 31.75 mm

radius waveguide operating at 170 GHz, the loss was measured with a Vector Network

Analyzer operating at rectangular fundamental mode. This measurement requires an

up-taper and mode-converter from WR-05 rectangular waveguide to the overmoded

corrugated cylindrical waveguide. The technique resulted in a measurement of a miter

bend loss of 0.05±0.02 db per bend. This loss is in agreement with theoretical loss

calculations, however the large error in the measurement is due the sensitivity of the

measurement, the reproducibility of results, and the higher order modes present in

the system. These higher order modes develop in the mode-converter/up-taper. The

measurements discussed in this thesis, primarily in Chapter 5 use the same equipment

as [18], however a measuring and analysis technique, described in Chapter 4, has been

employed to obtain a more accurate measurement and to minimize the error in the

measurement due to of higher order modes.

1.3 ITER

With a pressing need politically and scientifically for the large production of energy

with a small environmental impact, research into fusion energy is extremely beneficial.
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Figure 1-3: A diagram of the proposed ITER fusion reactor.

ITER, Latin for “The Way” and formerly known as the International Thermonuclear

Experimental Reactor, is an experimental fusion tokamak that will be a large advance-

ment towards the production of fusion power. A diagram of the tokamak is shown

in Figure 1-3. Seven participating countries have agreed to work on this project that

will be a large advancement in proving the viability of nuclear fusion energy as a

profitable power plant. With first plasma scheduled for 2016, ITER’s success would

provide the basis for an alternate means of energy in a future beyond the scope of

our current energy resources.

In addition to supportive research and collaboration, the United States ITER

Project will be delivering the transmission line system for the international ITER

team. This system must transport 20 MW of power at 170 GHz to the ignition plasma

from the twenty-four 1 MW Gyrotrons that will power the experiment, as depicted in

Figure 1-4. The power will be used for electron cyclotron resonance heating (ECRH)

and must be in the fundamental HE11 mode for proper use and precision accuracy

in launching the wave into the plasma. In ECRH, a high frequency electromagnetic
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Figure 1-4: A schematic of the ITER electron cyclotron resonance heating (ECRH)
system.

wave is injected into the plasma. The frequency of the wave is matched to the electron

cyclotron resonance frequency,

fce =
ωce

2π
=

eB

2πme
≈ 28[GHz/T ]B[T ] (1.4)

Since ITER operates at a magnetic field of 6 Teslas in the center of the plasma, fce

is 170 GHz.

A more specific schematic of the transmission line system between the Gyrotrons

and equatorial launcher into the plasma is shown in Figure 1-5. The delivery spec-

ification requires at least an 84% efficiency in transmission. Such a strict efficiency

for this amount of power necessitates high quality transmission components that will

meet these specifications and a complete theoretical and experimental analysis of the

loss in all of the components.

To transmit high frequency microwaves over long distances with small power loss,

overmoded transmission lines will be used. The transmission line components consist

of 63.5 mm diameter circular corrugated waveguide and operate in the fundamental
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Figure 1-5: A detailed schematic of the ITER transmission line system which will be
used for ECRH. The equatorial launcher directs the 170 GHz electromagnetic wave
into the plasma.

HE11 mode. The corrugated waveguides will minimize losses in the plasma heating

experiment. Table 1.1 shows a rough theoretical breakdown of the losses on the

transmission line. According to these preliminary calculations, an 86% efficiency in

transmission is possible. However, not all components are considered in these loss

measurements, resulting in a need for greater efficiency. In addition, the effects due

to mode conversion from the HE11 mode on mode launching into the plasma and

increased loss in the system are largely ignored.

It’s clear from Table 1.1 that a large part of the losses are due to the seven miter

bends required to transport the power. Therefore, a more accurate assessment of the

loss associated with these components will be particularly useful in quantifying the

loss of the entire system. Theory has predicted that the loss due to a miter bend is, on

average, 0.027 dB. This estimation accounts for diffraction loss, ohmic loss, and loss

due to a 0.05◦ tilt in the mirror of the miter bend (an estimation of manufacturing

inconsistencies). This thesis will focus largely on obtaining a precise experimental

measurement of the loss in a miter bend for the ITER transmission system.
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Losses ITER DDD 5.2 MIT Estimate
MOU Loss 0.22 dB –
Injection 0.035 dB 0.116 dB
Miter Bend 0.248 dB 0.19 dB
Polarizers 0.044 dB 0.066 dB
Waveguide Sag 0.078 dB 0.039 dB
Waveguide Tilt/Offset – 0.036 dB
Other 0.025 dB 0.043 dB
Total 0.65 dB 0.49 dB
Total without MOU 0.43 dB 0.49 dB

Table 1.1: An estimation of the losses in the ITER Transmission line system. [17]

Gyrotrons will be used to power ITER and generate Gaussian-like output beams

intended to propagate as the fundamental HE11 mode in transmission lines. Gyrotron

beams, being linearly polarized, allow for the use of linearly polarized (LP) modes as

a basis set for describing the mode patterns in a transmission line. This correlation

has been largely overlooked in the present literature. The use of this notation will

provide a convenient and consistent method for analysis.

Established miter bend theory provides a basis for the analysis of loss in a miter

bend, however the analysis is incomplete. This theory models the miter bend as a

gap in the waveguide of length L = 2a, and states that this 2-dimensional geometry

calculates twice the loss associated with a miter bend, about 0.5% HE11 loss for

the specified geometry [13]. Half of the power is lost in the gap and half is lost

due to mode conversion. However, parasitic higher order modes (HOMs) can greatly

influence the power loss [33]. Considering a practical input into the transmission lines

requires analysis of HOMs resultant from the imperfect input into the system. These

imperfections amount to several percent of HOMs and arise from the limitations of

the gyrotron output, offset and angle of the input into the transmission line, and

overall impurities in the system [25].

With the greater impact of ITER in mind, this thesis will focus on the loss associ-

ated with transmission lines, with an emphasis on miter bends. Using the LP modes

as a basis set, the impact of higher order modes on loss in the transmission lines will

be analytically calculated and experimentally considered. The mode content present
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in the experimental set-up will be measured. These mode considerations will allow

the loss in a miter bend to be experimentally measured with a larger accuracy and

certainty than previous attempts.

The transmission lines used in all experiments and specific theoretical calculations

and examples discussed in this thesis have been chosen and designed to meet ITER

specifications. The circular corrugated metallic waveguides have a radius of 31.75 mm

are operated at 170 GHz, with corrugation depths of d = λ/4. The components used

in experimentation (Chapter 5) are fabricated to ITER standards and specifications

by General Atomics.

1.4 Organization of this thesis

This thesis will theoretically and experimentally discuss the miter bend loss and

higher order mode content of corrugated cylindrical waveguides. New theoretical

analysis and experimental techniques have been developed to quantify higher order

mode effects and results in an accurate measurement of miter bend loss.

Chapter 1 has discussed the motivation for the project, as well as giving a pre-

liminary review of the literature and background information for the ITER project.

Chapter 2 reviews the modes present in corrugated cylindrical waveguides, particu-

larly the Linearly Polarized (LP) set of modes. Chapter 3 discusses the analytical

and theoretical attenuation in corrugated cylindrical waveguides. This analysis will

focus on the loss in a gap of waveguide and the loss due to a miter bend with an

emphasis on higher order modes. Chapter 4 describes the low-power experimental

measurement technique that we have developed to measure the loss in overmoded

waveguide components through S-Parameter analysis. Chapter 5 shows the results

from the implementation of this technique for both a gap in a straight section of

waveguide and a miter bend. Chapter 6 discusses the theoretical radiation of a wave

at the end of a waveguide, useful for applications such as injection system for electron

cyclotron heating of plasma. Finally, Chapter 7 discusses the impact of our results,

the conclusions from this work, and future work.
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Chapter 2
Modes in Cylindrical Waveguides

The modes in a corrugated cylindrical waveguide are inherently complex, but can be

simplified by taking reasonable approximations, the traditional basis set of hybrid

modes (i.e. TE, TM, HE and EH modes) for corrugated cylindrical waveguide are

readily defined in the literature (for example [11], [9], and [25]), but the derivation

of the hybrid mode formulation is presented in this chapter for completeness of our

argument. However, considering that high power experiments often use a linearly

polarized gyrotron as input, it is convenient to discuss and derive a Linearly Polarized

(LP) basis set of modes. The LP modes are an established basis set for optical

waveguides ([37], [27]). The set has been reformulated here to apply to corrugated

cylindrical waveguides. The LP set of modes for corrugated cylindrical waveguide is

an orthogonal basis set and will be used throughout the rest of this thesis.

2.1 Modes in a Smooth Waveguide

For completeness, the discussion on modes in a corrugated cylindrical waveguide

will start with a derivation of the modes in a smooth cylindrical waveguide, with

parameters as shown in Figure 2-1 for the Transverse Electric (TE) and Transverse

Magnetic (TM) waves.
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Figure 2-1: (a) The parameters of a smooth-walled cylindrical waveguide with a radius
of a. (b) The cylindrical geometry, for reference.

As with all mode derivations, we begin with Maxwell’s equations,

∇× �E = μ
∂H

∂t
(2.1)

∇× �H = −ε
∂E

∂t
+ �J (2.2)

∇ · �H = 0 (2.3)

∇ · �E =
ρ

ε
. (2.4)

Assuming no sources and solutions of the form ejωt, the wave equation is derived as

(∇2 + k2
)⎧⎨⎩

�E

�H

⎫⎬
⎭ = 0; (2.5)

The wavenumber is defined as k, such that k2 = w2με. For the waveguide considered

here, μ and ε are the permeability and permitivity of free space, such that k2 = ω2/c2.

In the case of cylindrical waveguides, the wavenumber is also defined as �k = kzẑ+k⊥ŝ,

or k2 = k2
z +k2

⊥, where ŝ is perpendicular to the direction of propagation, ẑ. However,

all the modes considered here are non-rotating, such that kφ = 0 and k⊥ = kr.

Therefore, the wavenumber is �k = kz ẑ + krr̂ and k2 = k2
z + k2

r [20].

Due to the geometry of the problem, the waves in the guide will propagate in the

positive ẑ-direction as e−jkzz, so that ∂/∂z = −jkz. The wave equation for the modes
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Figure 2-2: The zeroth and first order Bessel and Neumann functions.

in a cylindrical waveguide is

[
1

r

∂

∂r

(
r

∂

∂r

)
+

1

r2

∂2

∂φ2
+ k2

r

]⎧⎨
⎩ Ez

Hz

⎫⎬
⎭ = 0 (2.6)

At this point, the Bessel function must be discussed. The Bessel Function is

defined by the differential equation

[
1

s

∂

∂s

(
s

∂

∂s

)
+

(
1 − m2

s2

)]
Bm(s) = 0, (2.7)

where m is an integer, s is the argument to the function, and B is an mth order Bessel

function. This Bessel function derivative has solutions defined by special functions,

the Bessel function of the first kind, Jm(s), the Neumann function Nm(s), and the

Hankel functions of the first and second kind H
(1,2)
m (s). The Hankel function is a

combination of the the Bessel function of the first kind and Neumann function in the

complex plane. These different functions are discussed in detail in the the literature

(e.g. [20]). The different types are defined by how the function deals with respectively

large and small values of r. Figure 2-2 depicts the zeroth and first order Bessel and

Neumann functions.
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The wave equation, (2.6), can be rearranged to fit the form of the Bessel Function

differential equation. If Ez and Hz are assumed to have a sinusoidal dependence on

φ, then ∂2/∂φ2 = −m2. The wave equation is rewritten as

[
1

krr

∂

∂(krr)

(
krr

∂

∂(krr)

)
+

(
1 − m2

(krr)2

)]⎧⎨
⎩ Ez

Hz

⎫⎬
⎭ = 0. (2.8)

By comparison with equation (2.7) for the Bessel function, it’s clear that

⎧⎨
⎩ Ez

Hz

⎫⎬
⎭ = Bm(krr)

⎧⎨
⎩ sin(mφ)

cos(mφ)

⎫⎬
⎭ (2.9)

where Bm is a generalized mth order Bessel function.

At this point, it is pertinent to discuss which Bm functions are valid solutions

for the field equations. In particular, all field components must be finite within the

waveguide for a realistic solution. Considering Maxwell’s equations, the stipulation

for finite fields implies that both the Bm function type and it’s derivative must be

finite from r = 0 to r = a for all values of φ. Demonstrated in Figure 2-2, only the

Bessel function of the first kind, Jm, fits these conditions.

2.1.1 TM Modes

It is simple to split a wave into the Transverse Magnetic (TM) and Transverse Electric

(TE) components. The TM modes of the smooth wall cylindrical metallic waveguide

will be discussed first. These modes require that Hz = 0, therefore

Ez = E0Jm(krr)

⎧⎨
⎩ sin(mφ)

cos(mφ)

⎫⎬
⎭ e−jkzz (2.10)

where E0 in an arbitrary amplitude of the mode. Using Maxwell’s equations and the

dispersion relation for cylindrical waveguide, it is easy to find the solution for the rest
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of the fields,

Er =
jkzkrE0

k2 − k2
z

J ′
m(krr)

⎧⎨
⎩ sin(mφ)

cos(mφ)

⎫⎬
⎭ e−jkzz (2.11)

Eφ =
jkzE0

k2 − k2
z

m

r
Jm(krr)

⎧⎨
⎩ cos(mφ)

− sin(mφ)

⎫⎬
⎭ e−jkzz (2.12)

Hr =
−jωεE0

k2 − k2
z

m

r
Jm(krr)

⎧⎨
⎩ cos(mφ)

− sin(mφ)

⎫⎬
⎭ e−jkzz (2.13)

Hφ =
jωεkrE0

k2 − k2
z

J ′
m(krr)

⎧⎨
⎩ sin(mφ)

cos(mφ)

⎫⎬
⎭ e−jkzz. (2.14)

The sinusoidal and cosinusoidal dependence is arbitrary, considering the azimuthal

symmetry of a cylindrical waveguide.

The boundary conditions of the smooth wall cylindrical waveguide require the

perpendicular components of the electric field and the parallel components of the

magnetic field to be zero at the walls of the waveguide. Therefore, at r = a, Ez and

Eφ must be zero. This condition requires that Jm(kra) = 0, or

kr =
Xmn

a
(2.15)

where Xmn is the nth root of the mth Bessel function of the first kind, such that

Jm(Xmn) = 0. The dispersion relation can now be written as

kz =
√

ω2με − (Xmn/a)2. (2.16)

The cutoff wavenumber for the TMmn mode is kc,mn = Xmn/a, and the cutoff fre-

quency is fc,mn = cXmn/2πa.

Thus, the TMmn fields in a waveguide are fully defined by known parameters. The

indices indicate variations in the field both radially by m and azimuthally by n. The

lowest order TM mode for smooth-walled waveguide is the TM11 mode.

Select fields are shown in Figure 2-3. For corrugated cylindrical waveguide, only

41



TM02 TM 03 TM 04

Figure 2-3: The transverse electric field magnitude and vector plots for TM0m modes.
These modes also propagate in corrugated waveguide. The black circle indicates the
wall of the waveguide.

the TM0m(m > 1) modes propagate. This is due to the boundary conditions which

will be discussed when deriving the hybrid modes. The TM01 mode is a surface wave

in corrugated waveguide [11].

2.1.2 TE Modes

The same analysis can be performed for Transverse Electric (TE) modes in a smooth

wall cylindrical metallic waveguide. These modes require that Ez = 0, therefore

Hz = Jm(krr)

⎧⎨
⎩ sin(mφ)

cos(mφ)

⎫⎬
⎭ e−jkzz. (2.17)

Using Maxwell’s equations, as in the TM mode case, yields solutions for the transverse

fields in the waveguide, such that

Hr =
jkzkr

k2 − k2
z

J ′
m(krr)

⎧⎨
⎩ sin(mφ)

cos(mφ)

⎫⎬
⎭ e−jkzz (2.18)
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TE 01 TE 02 TE 03

Figure 2-4: The transverse electric field magnitude and vector plots for select TE0m

modes which will propagate in a corrugated waveguide. The black circle indicates the
waveguide wall.

Hφ =
jkz

k2 − k2
z

m

r
Jm(krr)

⎧⎨
⎩ cos(mφ)

− sin(mφ)

⎫⎬
⎭ e−jkzz (2.19)

Er =
jωμ

k2 − k2
z

m

r
Jm(krr)

⎧⎨
⎩ cos(mφ)

− sin(mφ)

⎫⎬
⎭ e−jkzz (2.20)

Eφ =
−jωμkr

k2 − k2
z

J ′
m(krr)

⎧⎨
⎩ sin(mφ)

cos(mφ)

⎫⎬
⎭ e−jkzz (2.21)

The boundary conditions remain the same as the TM case, however vanishing Ez,

Er, and Hφ requires that J ′
m(kra) = 0. Therefore,

kr =
X ′

mn

a
(2.22)

and the dispersion relation is

kz =
√

ω2με − (X ′
mn/a)2. (2.23)
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core  ε, μ
cladding  ε  , μ1        1

Figure 2-5: (a) The parameters of a dielectric cylindrical waveguide with a radius of
a for the core and a width of b for the cladding. (b) The cylindrical geometry, for
reference.

The cutoff frequency for the TEmn mode of fc,mn = cX ′
mn/2πa.

For completeness, select TE fields are shown in Figure 2-4. The modes shown in

this figure and all TE0n(n > 0) also propagate in corrugated cylindrical waveguide.

Other TE modes do not satisfy the boundary conditions for corrugated waveguide,

discussed in the next section.

The magnitude plots of the TE modes in Figure 2-4 follow a similar pattern to

the TM modes in Figure 2-3, however they are off by 1 radial index. It should be

noted that the TE0n and TM0(n+1) modes have Eφ[TE] and Hz[TE] of the same form

as Hφ[TM] and Ez[TM], respectively. It can also be seen that the TE0m modes are

degenerate with the TM1m modes, meaning that they have the same propagation

constant.

2.2 Hybrid Modes in Corrugated Waveguides

2.2.1 Modes of a Dielectric Waveguide

The hybrid modes, referred to as the EH and HE modes, of a corrugated waveguide are

found by recognizing two conditions. One, a corrugated waveguide is mathematically

similar to a dielectric waveguide in the way that maxwell’s equations will be solved

[21]. Two, instead of dielectric waveguide boundary conditions, the corrugations in

the waveguide create wall functions which impose their own boundary conditions on

the modes in the waveguide [11].
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For a dielectric waveguide, shown in Figure 2-5, the wave equation 2.6 remains

the same, and one solution for the Ez and Hz fields inside the waveguide, r < a, is

Ez = AJm(krr) sin (mφ)e−jkzz (2.24)

Hz = BJm(krr) cos (mφ)e−jkzz, (2.25)

as shown in the previous section. Alternatively, Ez and Hz could have a 90 degree

phase difference and depend on cos (mφ) and sin (mφ) (or ejmφ and e−jmφ) respec-

tively, but that is an arbitrary distinction given the azimuthal symmetry of the waveg-

uide. For simplicity only the first case will be discussed, but that alternative solution

will be kept in mind for the discussion of LP modes in the next section, where it will

play an important role in defining a complete basis set.

Instead of splitting these two solutions, as was done for the discussion of TE and

TM modes, we will consider both fields simultaneously to create the Hybrid Electric

modes. Thus, we arrive at the field solutions for a dielectric waveguide for r < a

Er =
1

k2
r

[
AjkzkrJ

′
m(krr) sin (mφ) − B

jωμm

r
Jm(krr) sin (mφ)

]
e−jkzz (2.26)

Eφ =
1

k2
r

[
A

jkzm

r
Jm(krr) cos (mφ) − BjωμkrJ

′
m(krr) cos (mφ)

]
e−jkzz (2.27)

Hr =
1

k2
r

[
BjkzkrJ

′
m(krr) cos (mφ) − A

jωεm

r
Jm(krr) cos (mφ)

]
e−jkzz (2.28)

Hφ =
1

k2
r

[
−B

jkzm

r
Jm(krr) sin (mφ) − AjωεkrJ

′
m(krr) sin (mφ)

]
e−jkzz (2.29)

For r > a, the field decays and follows the modified Hankel function, such that

the ẑ-directed fields, as solved by the wave equation, are

Ez = CH(1)
m (jkrIr) sin (mφ)e−jkzz (2.30)

Hz = DH(1)
m (jkrIr) cos (mφ)e−jkzz, (2.31)

where krI is the imaginary component of the r̂-directed wavenumber in the cladding
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(a) (b)

Figure 2-6: (a) The parameters of a corrugated cylindrical waveguide with a radius
of a and corrugation of depth, d. The waveguide corrugations are not drawn to scale.
(b) The cylindrical geometry, for reference.

of the dielectric waveguide. That is, k1r = jkrI , and the dispersion relation in the

cladding is k2
1 = ω2μ1ε1 = k2

z − k2
1r. The transverse fields for the cladding can be

found with the wave equation, as shown in [20].

The differing EH and HE modes arise when considering the rather complicated

guidance condition for dielectric waveguides. The further derivation of Hybrid modes

in dielectric waveguide is outside of the scope of the thesis, but the reader is referred

to [20], [27], and [37] for further discussion and a more complete derivation of the

hybrid modes.

2.2.2 Modes of a Corrugated Metallic Waveguide

For a corrugated waveguide, depicted in Figure 2-6 (reproduced from Chapter 1), it is

sufficient to say that the wall functions will serve to implement the guidance condition

on the waveguide [15]. These functions will determine the standing wave fields in the

corrugations for a < r < a + d, taking the place of the decaying fields in the cladding

of the dielectric waveguide. The standing wave fields in the corrugations will specify

the boundary conditions for the fields when r < a. It is important to keep in mind

that the main difference between these two types of waveguide is that E → 0 at r = a

for a corrugated waveguide, whereas E is finite at r = a for a dielectric waveguide.

Within the corrugation at r = a + d, Ez = 0 and Hφ is maximized. These
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conditions lead to the wall impedance in the z direction as,

Zz =
Ez(r = a)

Hφ(r = a)
= Z0 tan(kd), (2.32)

where k is the wavenumber and Z0 is defined by the corrugation widths,

Z0 = −j
w1 − w2

w1

√
μ0

ε0
(2.33)

(see Figure 1-1 for parameter definitions) [11], [15]. For the case considered in this

thesis d = λ/4, such that Zz = ∞, and Hφ(r = a) = 0. This condition extends to the

transverse electric field components, such that Eφ(r = a) = 0 and Er(r = a) = 0.

With these wall impedances, the electric fields for the HEmn(m, n > 0) modes for

a corrugated waveguide can be written as

Ex = A

[
Jm−1

(
Km−1,nr

a

)
sin ([m − 1]φ)

+
ΔX2

m−1,n

4mka
Jm+1

(
Km−1,nr

a

)
sin ([m + 1]φ)

]
(2.34)

Ey = A

[
Jm−1

(
Km−1,nr

a

)
cos ([m − 1]φ)

−ΔX2
m−1,n

4mka
Jm+1

(
Km−1,nr

a

)
cos ([m + 1]φ)

]
(2.35)

Ez = −jA
Xm−1,n

ka
Jm

(
Km−1,nr

a

)
sin (mφ) (2.36)

where A is the amplitude of the electric field, Xmn is the nth root of the mth Bessel

function, and η is impedance. In addition, Kmn is defined as

Kmn = Xmn

(
1 − Σ

2ka

)
(2.37)
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and Δ is a function defined for corrugated waveguides as

Δ = −w1 + w2

w1

1 + 2 tan kd
ka

tan kd
(2.38)

with Σ = Δ in this case. Σ and Δ are both considered wall functions, meaning

that they depend on the impedance of the wall and, if changed, indicate a different

type of cylindrical waveguide. Since we are only concerned with quarter-wavelength

corrugations, kd = pi/2, we can evaluate (2.38) to Σ = Δ = 0. Therefore, we can

also evaluate Kmn = Xmn. In addition, the value ka is large for oversized waveguide,

so the HEmn electric field is simplified as

Ex = AJm−1

(
Xm−1,nr

a

)
sin ([m − 1]φ) (2.39)

Ey = AJm−1

(
Xm−1,nr

a

)
cos ([m − 1]φ) (2.40)

Ez ≈ 0. (2.41)

For the EHmn modes the electric field can also be defined using the same param-

eters

Ex = A

[
Jm+1

(
Km+1,nr

a

)
cos ([m + 1]φ)

−ΔX2
m+1,n

4mka
Jm−1

(
Km+1,nr

a

)
cos ([m − 1]φ)

]
(2.42)

Ey = A

[
Jm+1

(
Km+1,nr

a

)
sin ([m + 1]φ)

+
ΔX2

m+1,n

4mka
Jm−1

(
Km+1,nr

a

)
sin ([m − 1]φ)

]
(2.43)

Ez = jA
Xm+1,n

ka
Jm

(
Km+1,nr

a

)
cos (mφ) (2.44)

In addition, the same approximations can be made as in the HEmn modes for quarter-
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wavelength corrugations. Therefore, the EHmn electric field is approximated as

Ex = AJm+1

(
Xm+1,nr

a

)
cos ([m + 1]φ) (2.45)

Ey = AJm+1

(
Xm+1,nr

a

)
sin ([m + 1]φ) (2.46)

Ez ≈ 0. (2.47)

For both HE and EH modes, the magnetic fields are defined via the electric fields

as

Hx = −Ey

η
(2.48)

Hy =
Ex

η
(2.49)

Hz = −Ez

η
tan (mφ + θ) . (2.50)

See [9] for further explanation. For the HE1n mode, it is common to approximate the

transverse fields as

Ey = AJ0

(
X0nr

a

)
(2.51)

Hx = −A

η
J0

(
X0nr

a

)
(2.52)

with Ex, Ez, Hy, and Hz negligibly small [34]. This approximation will be justified

for LP modes in the next section.

2.2.3 Descriptions of modes

For a corrugated cylindrical waveguide, the HE11 mode is the fundamental mode of

the guide. As shown in Figure 2-7, the transverse components of the electric and

magnetic field have no azimuthal or radial variations and are polarized in the ŷ-

direction. The ẑ-directed field is non-zero, but falls by a factor of λ/a comparative

to the transverse fields, so it is negligible for the oversized waveguides discussed here.

For reference, other HEmn modes are depicted in Figure 2-7 and EHmn modes are
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shown in Figure 2-8. Note that all HE1n modes are polarized in the ŷ-direction.

At this point, recall that the assignation of cosine and sine dependence on φ to

x̂ and ŷ-directed electric fields was arbitrary. Therefore, it would also be possible

to have HE1n modes which are polarized in the x̂-direction with a transformation of

φ → φ′ + π/2. This concept of polarization will be further explored in the discussion

on LP modes.

2.3 Linearly Polarized (LP) Modes

The following section is adapted from Kowalski et al. 2010, in review [21].

In a cylindrical corrugated waveguide, all of the HE and EH modes will propagate.

However, this does not form a complete basis set. For the entire hybrid mode basis

set, one must also consider the TE0n and TM0n modes for corrugated wavegudie which

are the same as the previously derived modes for smooth-wall waveguide [11].

A wave propagating in a corrugated waveguide may be formed through the sum-

mation of the hybrid modes. However, for practical characterization of the wave it

is not enough to just describe the amplitude of the propagating wave through the

hybrid mode basis set; the polarization of the wave must be also considered. In appli-

cations, gyrotrons are used to produce Gaussian beam inputs into the transmission

line. These inputs are linearly polarized beams, and must propagate as a summation

of modes which is linearly polarized. The fundamental mode of corrugated waveguide,

the HE11 mode is linearly polarized. However, the hybrid modes, in general, do not

satisfy the linear polarization condition.

In this section, a set of linearly polarized eigenmodes (LPmn) for corrugated metal-

lic waveguide is derived. Since gyrotron beams are linearly polarized, the LPmn mode

set has advantages for describing this radiation.

2.3.1 Derivation of Modes

Linearly polarized modes will be formed in much the same was as the HE modes

were formulated. Since we are still using corrugated cylindrical waveguide, the
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HE 11 HE 12 HE 13

HE 21 HE 22 HE 31

Figure 2-7: The transverse electric field magnitude and vector plots for select HEmn

modes which will propagate in a corrugated waveguide. The black circle indicates the
waveguide wall.
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EH 12 EH 13 EH 22

EH 23 EH 32 EH 33

Figure 2-8: The transverse electric field magnitude and vector plots for select EHmn

modes which will propagate in a corrugated waveguide. The black circle indicates the
waveguide wall.
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boundary conditions for the field remain the same as the hybrid mode case. How-

ever, in the linearly polarized case it is useful to discuss the fields as being di-

rected in Cartesian coordinates, such that the electric field is defined as �E(r, φ, z) =

Ex(r, φ, z)x̂ + Ey(r, φ, z)ŷ + Ez(r, φ, z)ẑ, where

Ey = Er sin φ + Eφ cos φ. (2.53)

Ex = Er cos φ − Eφ sin φ. (2.54)

and the magnetic field is similarly defined. To polarize in the ŷ direction, Ex must

be zero, which implies that Er = f(r, φ, z) sin φ, and Eφ = f(r, φ, z) cosφ. These

forms satisfy the wave equations for cylindrical coordinates and boundary conditions

imposed by the corrugations, so long as f(a, φ, z) = 0. Therefore, Ey = f(r, φ, z)

and the boundary condition that must be satisfied for linearly polarized modes is

Ey(r = a, φ, z) = 0. This extrapolation of Ey is similar to the definition of LP modes

for dielectric waveguides, as in [37]. Once again, the difference between the dielectric

and corrugated case is the boundary conditions; whereas dielectric guides have finite

fields at the wall, the metallic guides considered here have Ey = 0 at the wall of the

guide, as shown in the previous section.

Solving for the fields in the waveguide requires Ey to satisfy the wave equation,

as well. Though the electric field is discussed in Cartesian coordinates to satisfy

the linearly polarized condition, it is more convenient to use cylindrical variables to

express the function, such that

∂2Ey

∂r2
+

1

r

∂Ey

∂r
+

1

r2

∂2Ey

∂φ2
+

∂2Ey

∂z2
+

ω2

c2
Ey = 0. (2.55)

Assuming a ẑ-dependence of e−jkzz and a φ̂-dependence of cos(mφ) or sin(mφ) the

wave equation is reduced to

r2∂2Ey

∂r2
+ r

∂Ey

∂r
+
[
(krr)

2 − m2
]
Ey = 0. (2.56)
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which is the Bessel function differential equation, as previously described in Eq. 2.7.

Again, the Bessel function of the first kind is chosen to satisfy finite electric field

conditions, such that

Ey(r, φ, z) = AJm(krr)

⎧⎨
⎩ cos(mφ)

sin(mφ)

⎫⎬
⎭ e−jkzz, (2.57)

where A is a constant and either sinusoidal dependence on φ is possible. Unlike the

HE case, we will keep both the sinusoidal and cosinusoidal solutions to keep the full

basis set. The boundary condition Ey(a, φ, z) = 0 requires that kr = Xmn/a, where

Xmn is the nth zero of the mth Bessel function. Through Maxwell’s equations, the

dominant field components for LPmn modes are

Ey,mn(r, φ) = AJm

(
Xmnr

a

)⎧⎨
⎩ cos(mφ)

sin(mφ)

⎫⎬
⎭ e−jkzz, (2.58)

Hx,mn(r, φ) =
−Akz

ωμ0

Jm

(
Xmnr

a

)⎧⎨
⎩ cos(mφ)

sin(mφ)

⎫⎬
⎭ e−jkzz,

(2.59)

The longitudinal components, Ez and Hz, and the transverse magnetic field in the

ŷ-direction, Hy, are nonzero, but negligible by a factor of λ/a. The transverse electric

field in the x̂-direction is defined due to the linear polarization condition as Ex = 0.

The odd and even LPmn modes are defined with a perpendicular electric field as

�E⊥
mn(r, φ) = ŷAJm

(
Xmnr

a

)⎧⎨
⎩ cos(mφ) (odd)

sin(mφ) (even).
(2.60)

To create an orthonormal basis set, a normalization factor is calculated

Nmn =

∫ a

0

∫ 2π

0

[
E⊥

mn(r, φ)
]2

r dφdr. (2.61)
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Mode Xmn Degenerate modes
LP01 2.405 HE11

LP
(o)
11 3.832 TE01, HE21

LP
(e)
11 3.832 TM02, HE21

LP21 5.136 HE31, EH12

LP02 5.520 HE12

LP31 6.380 HE41, EH22

LP
(o)
12 7.016 TE02, HE22

LP
(e)
12 7.016 TM03, HE22

LP22 8.417 HE32, EH13

LP03 8.653 HE13

LP32 9.761 HE42, EH23

LP
(o)
13 10.17 TE03, HE23

LP
(e)
13 10.17 TM04, HE23

Table 2.1: Select LP modes with corresponding degenerate modes.

For LP0n (HE1n) modes, this normalization evaluates to

N0n = A2πa2J2
1 (X0n), (2.62)

and for all other LPmn modes, where m �= 0,

Nmn = A2 πa2

2
J2

m−1(Xmn). (2.63)

With this factor,

umn = E⊥
mn/

√
Nmn, (2.64)

such that umn is a simple way to express the normalized LPmn mode.

2.3.2 Relationship between Hybrid and LP modes

Any wave propagating in the corrugated metallic waveguide can be projected onto an

orthonormal basis set of modes. Both the hybrid modes and the LPmn modes form

such a basis set. Here, we indicate the relationships between these two basis sets and

show how the LPmn modes can be constructed from the hybrid mode basis set.

As can be shown in Figure 2-7, the HE1n modes are also the LP01 modes. The
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Figure 2-9: Field vector plots demonstrating the construction of LP modes from TE,
TM, and HE modes. The added modes have identical propagation constants. (a)

TM02 + HE21 rotated 45◦ = LP
(e)
11 ; (b) −TE01 + HE21 = LP

(o)
11 ; (c) EH12 rotated

−90◦ + HE31 rotated −90◦ = LP
(e)
21 ; (d) EH12 rotated 180◦ + HE31 = LP

(o)
21 .
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HE32 EH13 LP22 (o)
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HE13 EH32 LP22e

HE22 TM03 LP12e

TE02 HE22 LP12o

LP31eHE41EH22

Figure 2-10: Field vector plots demonstrating the construction of LP modes from TE,
TM, HE, and EH modes. The added modes have identical propagation constants.
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electric field for the HE1n modes was already polarized. Therefore, the HE1n notation

will be kept in order to agree with the existing literature; this assignment is useful

for discussing the fundamental HE11 mode.

Other LPmn modes can be constructed through the addition of HEmn, EHmn,

TE0n, or TM0n modes with the same propagation constants (degenerate modes).

Table 2.1 lists these degenerate modes. Figures 2-9 and 2-10 illustrate, for a few LP

modes, how the addition of hybrid modes can form LPmn modes. For all examples,

the LP modes are constructed with a 1:1 power ratio of two hybrid modes and the

hybrid modes are rotated along the ẑ-axis to cancel x̂-components of the electric fields.

Cancellation of the ŷ-components could be achieved in a similar manner to form the

x̂-directed LP modes. A 180◦ phase shift between the hybrid modes corresponds to

subtraction, as seen in Figure 2-9(b). The first two examples, the LP11 modes, were

previously described in [3]. Through the field vector plots, Figure 2-9 demonstrates

this relationship between LP modes and HE, EH, TE, and TM modes. For example,

the LP
(e)
11 mode can be constructed by adding the TM02 mode and the HE21 mode,

rotated by 45◦ as seen in Figure 2-9(a). When adding these modes, the x̂-components

of the field cancel while the ŷ-components add, resulting in a ŷ-directed linearly

polarized field. All three of these modes are characterized by the Bessel function zero

Xm =3.832 and, therefore, have the same beat wavelength with the HE11 mode.

Conversely, the hybrid modes may be constructed from the LP modes since both

sets form complete basis sets. The complete LP mode basis set consists of the even

and odd forms as well as x̂ and ŷ-directed modes for each form. That is, each LPmn

indexed mode consists of 4 degenerate modes: LP
(e)
mn[x̂], LP

(o)
mn[x̂], LP

(e)
mn[ŷ], LP

(o)
mn[ŷ].

(Except for LP0n, which has only two degenerate modes since the odd and even forms

are identical.) For example, the TM02 mode is equivalent to LP
(o)
11 [ŷ]−LP

(e)
11 [x̂]. For

the TM02 mode, the electric field is

E = φ̂AJm

(
Xmnr

a

)
(2.65)
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which is equivalent to

E = ŷAJm

(
Xmnr

a

)
cos φ − x̂AJm

(
Xmnr

a

)
sin φ (2.66)

which are the equivalent fields for for the modes LP
(o)
11 [ŷ] and −LP

(e)
11 [x̂], respectively.

Using Table 2.1 as a refernce list for degenerate modes, all hybrid modes can be

constructed from their degenerate LP modes.

Since both sets of modes are basis sets, it is possible to use either set to describe

a linearly polarized beam in a waveguide. However, it is necessary to account for

HE, EH, TE, and TM modes that result in combinations (like those listed above) to

preserve linear polarization. Due to this restriction, it is more convenient to consider

the LP mode basis set for analysis in corrugated cylindrical waveguides with linearly

polarized experimental inputs.
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Chapter 3
Theoretical Calculations of Power Loss in

Corrugated Waveguide Components

The theoretical loss in overmoded waveguide components is well-established for the

propagation of the fundamental HE11 mode. However, the theoretical loss due to

a LPmn multi-mode system is necessary for the discussion of gyrotron applications.

This section discusses the theoretical loss present in straight sections of waveguide,

a gap of waveguide, and a 90◦ miter bend. The theory is applicable to quarter-

wavelength corrugated waveguide, and all calculations are performed for 170 GHz

63.5 mm diameter waveguide.

This chapter also shows that calculations of transmission through waveguide com-

ponents for the fundamental HE11 mode is largely dependent on the higher order

modes in the system. Previously, [13] calculated the loss in a gap for the HE11 mode,

and [33] expanded the calculation to also include the effect of an HE12 mode; it

was found that the loss in HE11 is dependent on the phase between the HE11 and

HE12 modes. This chapter expands the calculation of loss in a gap to include the

effects of other higher order modes in a multi-mode system on the transmission of the

fundamental HE11 mode.
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3.1 Straight Sections of Waveguide

The loss in straight sections of overmoded corrugated cylindrical waveguide is well

established, as discussed in the review of the literature. The fundamental mode of

the corrugated waveguide, the HE11 mode, has less attenuation than the fundamental

modes for equivalent smooth-wall cylindrical and rectangular waveguides. This effect

is reviewed for frequencies from 1–10 GHz in [4] and for the 100 GHz range in [1].

Overmoded corrugated waveguides have extremely low losses at high frequencies,

even for higher order modes [22], [3]. The attenuation for a corrugated guide scales

inversely with the cube of the radius to wavelength ratio, a/λ.

For most purposes, when quarter-wavelength corrugations are considered, the at-

tenuation loss in straight sections is negligible. However, if the guide size (a/λ) is too

large for the application at hand, power will be lost when the beam is injected into

the system due to coupling into HOMs. For this reason, the ITER application limits

the ratio to a/λ = 18. This ratio creates a reasonably sized waveguide into which

a Gaussian beam from a gyrotron output with a waist size w0 = 0.64a can easily

couple.

The Ohmic loss for ITER transmission lines is discussed at length in [12] and [14],

and calculated as 0.18×10−4 Np/m (or 1.6×10−4 dB/m). As shown in [31], the ohmic

loss in straight sections is negligible, particularly when compared to other methods

of loss on the line.

Though the attenuation in straight sections is negligible, it is pertinent to note

that a multi-mode system has the ability to produce mode-beating which can be

observed over straight sections of the line. For example, consider a two-mode system

which propagates as

�E = �Em1n1 + �Em2n2 , (3.1)

where �Emn =
√

Amnumne
−jkz,mnz, umn is defined in (2.64), and Amn is the power in a

particular mode. Then, to calculate the power in the system

|E|2 =
∣∣∣√Am1n1um1n1e

−jk1z +
√

Am2n2um2n2e
−jk2z

∣∣∣2 (3.2)
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Figure 3-1: The measured amplitude of a 140 GHz wave as it travels through 88.9 mm
diameter corrugated waveguide, as observed by [26].

which can be expanded to

|E|2 =
[√

Am1n1um1n1 cos(kz,m1n1z) +
√

Am2n2um2n2 cos(kz,m2n2z)
]2

(3.3)

+
[√

Am1n1um1n1 sin(kz,m1n1z) +
√

Am2n2um2n2 sin(kz,m2n2z)
]2

and reduced to

|E|2 = Am1n1 + Am2n2 + 2
√

Am1n1Am2n2 cos(Δkz), (3.4)

or

|E|2 = 1 + 2
√

Am1n1Am2n2 cos(Δkz), (3.5)

since all power must be accounted for in the system. We have defined Δk = kz,m1n1 −
kz,m2n2 , the difference between the propagation vectors of the modes. This analysis

indicates that the power in a two-mode system oscillates with a wavelength of 2π/Δk.

This mode beating effect was previously observed by [26] and is reproduced in
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Figure 3-1. In the study, a beating with a normalized linear amplitude of 0.24 was

observed with Δk = 1.1245/m. The parameters observed correspond to beating

between 98.5% HE11 and 1.5% LP11 modes. Just a small amount of higher order

mode in the system caused a large fluctuation in the measured transmission through

straight sections of waveguide.

For a multi-mode system, more complicated mode-beating is observed. The elec-

tric field in a generic multi-mode system is expressed as

�E =

N∑
p=1

�Empnp (3.6)

where N is the number of modes in the system. This produces a power in the system

related to

|E|2 = 1 +

N∑
p=1

N∑
q=1
q �=p

√
AmpnpAmqnq cos

[(
kz,mpnp − kz,mqnq

)
z
]
. (3.7)

Therefore, the power oscillates with many different frequencies dependent on the

difference between wavenumbers of the propagating waves. For a system consisting

of the five modes with the smallest k⊥ (The “lowest order” modes), there would be

ten distinct frequencies of oscillation all in the range from 1–5m. The oscillations

may be significant depending on the mode content of the system, as shown in [26].

These oscillations can affect the measurements of loss in other components on the

line. This effect is further complicated when several modes must be accounted for,

as will be discussed when considering the baseline measurements in Chapter 5, where

we characterize the transmission measured through straight sections of waveguide as

a baseline measurement for data analysis.

3.2 Loss due to a Gap in Waveguide

Most waveguide transmission lines are dominated by long, straight sections of waveg-

uide which have negligible loss when a/λ 	 1 [11]. However, a practical waveguide
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Input mode mixture Output mode mixture

a

Figure 3-2: (a) A radially symmetric gap with length L = 2a. (b) A miter bend with
a radius of a that can be modeled using equivalent gap theory, as described in the
text.

system must have waveguide gaps, bends, and switches in which the wave propagates

a distance without a confining wall. Losses in these components often dominate the

total loss of the line. In this section, we calculate the power loss for combinations of

LPmn modes due to a gap in straight waveguide, as depicted in Figure 3-2. This is a

robust theory which will be used to approximate the loss in a miter bend in Section

3.3 and validate measurement techniques in Chapter 5.

3.2.1 Single Mode Input

For LPmn modes, the electric field in a gap is derived using the Fresnel Diffraction

integral, an approach similar to [10]. The electric field in the gap can be calculated

using the Fresnel integral [19],

E⊥
g (x, y, z) =

j

λz

∫ ∞

−∞

∫ ∞

−∞
Ei(x0, y0, z0)e

−j k
2z [(x−x0)2+(y−y0)2]dx0dy0 (3.8)

where Ei(r, φ) defines the transverse electric field present at the input into the gap,

and z is defined as the distance into the gap after the end of the waveguide. It should

be noted here that this method is a Kirchhoff approximation, in which there are

negligible reflections at the truncated apertures since a/λ >> 1 [36].

Since the waveguide input may be viewed as a spherical aperture, we can transform

the Fresnel integral to spherical geometry and limit the integration to the waveguide
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radius,

E⊥
g (r, φ, z) =

jk

z
ej kr2

2z

∫ a

0

∫ 2π

0

Ei(r0, φ0, z0)e
j k

2z [r
2
0−2rr0 cos(φ−φ0)]r0 dφ0dr0 (3.9)

The input into the Fresnel integral, Ei(r, φ), is the combination of modes present

at the transmitting port, labeled as ‘input’ in Figure 3-2. In the single mode case,

Ei(r0, φ0, z0) = umn(r0, φ0)e
jkzz0 , (3.10)

where kzz0 is the phase of the mode as it exits the waveguide, and z0 is the location

of the gap. In the single mode case, the phase of the mode is irrelevant and dropped

for simplicity, such that

Ei(r0, φ0, z0) = umn(r0, φ0). (3.11)

Then, for an input consisting of a single normalized LPmn odd mode, the electric field

in the gap is

E⊥
g (r, φ, z) = jk

z
A√
Nmn

ej kr2

2z∫ a

0

∫ 2π

0
Jm

(
Xmnr0

a

)
cos(mφ0)e

j k
2z [r

2
0−2rr0 cos(φ−φ0)]r0 dφ0dr0.

(3.12)

The integral with respect to φ0 is solved using methods discussed in [16], such that

∫ 2π

0

ejk
rr0
z

cos(phi0−phi)−jnφ0dφ0 = 2πJn

(
k
rr0

z

)
ejn[(π/2)−φ]. (3.13)

Using Euler’s equation to transform cos(mφ0), the above integral may be applied to

(3.12). With some algebra, the electric field in a gap with a single mode input is

�E⊥
g,mn(r, φ, z) = ŷ

j2πkA

z
√

Nmn

ejmπ
2 ej kr2

2z cos (mφ)

∫ a

0

Jm

(
Xnr0

a

)
Jm

(
krr0

z

)
ej

kr2
0

2z r0dr0.

(3.14)

where the integral with respect to r0 must be solved numerically. Note that LPmn even

modes result in the same �E⊥
g,mn(r, φ, z) as (3.14) with cos (mφ) replaced by sin (mφ).

For a discussion on how fields propagate inside the gap, see Chapter 6. There,
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the discussion is expanded to consider the Fresnel diffraction of fields after leaving a

waveguide (in a ‘gap’) when discussing launching a wave at the end of the transmission

line system. In Chapter 6, the angle and offset of the beams is discussed as it radiates

in free space.

To calculate the loss in a gap, the wave must enter the receiving waveguide after

a length of gap, z = L. The received wave is labeled as ‘output’ in Figure 3-2. The

loss is denoted as the power that does not couple back into the fundamental HE11

mode. If the system began with a pure mode, then the power loss in that mode is

calculated as

Loss in LPmn = Amn −
∫ a

0

∫ 2π

0
Eg,mnumndrdφ∫ a

0

∫ 2π

0
|umn|2drdφ

(3.15)

or, using the fact that the basis set is normalized and there is only a single mode

input,

Loss in LPmn = 1 −
∫ a

0

∫ 2π

0

Eg,mnumndrdφ (3.16)

Power loss for a specific input mode occurs in the gap for two reasons. First, as a

result of diffraction, some of the power exiting the transmitting waveguide lies outside

of the receiving waveguide at r > a and is lost, this is called truncation loss. Second,

there is power which enters the receiving waveguide but couples to secondary modes

instead of the original input mode. For large a/λ, all of the modes produced in the

receiving waveguide will propagate down the waveguide, the coupling to other modes

results in additional power loss when considering the original mode. This is called

mode conversion loss.

The power lost is largely dependent on the length of the gap. Figure 3-3 shows

the loss in the fundamental mode due to a pure fundamental mode input for a gap of

varying length. It is clear that as the length of the gap gets larger, more of the power

is lost in the gap. Chapter 6 gives further explanation to the calculated field pattern

in the gap.

For a/λ large, the power in the output port will consist primarily of power in

the same mode (LPmn) as was incident at the input port. Small amounts of power

in other modes will also be present at the output port. These small amounts are
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Figure 3-3: The loss in the fundamental HE11 mode due to a 100% HE11 mode input
versus the length of the gap. Simulations are done at 170 GHz in 63.5 mm diameter
waveguide. The red star indicates the length of gap which corresponds to L = 2a =
63.5 mm where the loss is 0.0227 dB.
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Figure 3-4: The percent output of the power present in the LPmn modes after a gap
that results from a 100% LPm1 mode input, for m = 0 through m = 4. LPm1 mode
power outputs (which are over 94%) have been cropped to show higher order mode
content.
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illustrated for the case of LPm1 modes in Figure 3-4. Figure 3-4 shows the LPmn

mode content in the receiving guide due to a single LPm1 mode radiating from the

transmitting guide through a gap of length L = 2a and a system operating at 170 GHz

with a = 31.75 mm. Results are shown for cases with m = 0 through 4. In these

cases, over 94% of the power couples to the original input mode, less than 3% of the

power is lost in the gap, and the rest of the power couples to higher order modes with

the same azimuthal, m, index, as shown in the figure.

A particular input mode will only result in output modes of the same azimuthal

symmetry. For example, the case of 100% HE11 (LP01 in Figure 3-4) input results in

99.48% HE11 after the gap and 0.26% power lost in the gap. The remaining power

goes into the HE1n higher order modes, with the largest percentages in HE16 (0.041%)

and HE15 (0.039%), while HE12 is the seventh largest mode with 0.007% of the total

power. Also, consider an input of 100% LP
(o)
11 , which has an output of 98.68% LP

(o)
11 ,

0.67% of power lost to the gap, and the remaining power coupled into higher order

LP
(o)
1n modes. Table 3.1 shows this single-mode input with the expected output. In

each of these cases, the input power is either lost in the gap or couples into modes

with the same azimuthal symmetry as the original input mode.

3.2.2 Multiple Mode Inputs

In the previous section, we considered a single mode at the input port of the gap. In

this section, we consider a multiple mode input. In this case, we must consider both

the amplitudes of the modes and their phases. A multiple mode input follows the

same procedure as a single mode input. The gap loss is calculated using (3.9), where

the input electric field is now defined as a summation of modes,

Ei(r, φ) =
∑
m

∑
n

√
Amnejθmnumn(r, φ), (3.17)

where Amn and θmn indicate the relative power and phase of the input LPmn modes.

The output can also be expressed as a summation of each individual mode applied to
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Table 3.1: Mode content before and after a gap. (For HE1n and LP1n, n > 1)

Mode Input (%) Modes After Gap (% content) Gap Other

HE11/LP(o)
11 HE11 LP(o)

11 HE1n LP1n Other Loss Loss

100/0 99.48 0 0.22 0 0 0.26 0.04

0/100 0 98.68 0 0.58 0 0.67 0.07

90/10 89.53 9.87 0.20 0.06 0 0.30 0.04

equation (3.9) (as was done for equation (3.14) in the previous section),

�E⊥
g (r, φ, L) =

∑
m

∑
n

√
Amnejθmn �E⊥

g,mn(r, φ, L). (3.18)

The electric field in a gap for a multiple mode input is simply the summation of the

electric field in a gap due to each individual mode input.

After summing, the modal powers in the waveguide after the gap are calculated

in the same way as the single mode case. The contribution into a specific mode must

be calculated by considering the effects of all of the modes as they transverse the gap.

For example, the loss in the fundamental mode due to an arbitrary multi-mode input

is

Loss in LP01 = A01 −
∑

n

∑
m

∫ a

0

∫ 2π

0

Eg,mnu01drdφ (3.19)

In this case, it’s easy to note that only modes with the same azimuthal (m) index

will be able to couple into each other after the gap. All other modes will result in a

coupling integral of zero. Table 3.1 shows this concept. The losses for a pure HE11

mode input and a pure LP
(o)
11 are shown next to the losses for a two-mode input.

It’s clear that the percentages of higher order mode content after the gap are only

dependent on the modes with the same azimuthal symmetry. Considering a 90% HE11

mode, the expected output percentage is (99.48×0.9)% = 89.53%. The same holds for

a 10% LP
(o)
11 mode, with an expected output percentage of (98.68 × 0.1)% = 9.87%.

However, the numbers that appear in Table 3.1 were calculated using the fresnel

diffraction equations derived above; showing that the intuition for this problem is

correct.
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Figure 3-5: The power lost in the HE11 mode versus the phase difference between the
two input modes. The system considers a two-mode input of HE11 and HE12, L =
63.5 mm, and 170 Ghz. Maximum loss is at 310◦ and minimum loss occurs at 130◦.

Alternatively, if two azimuthally symmetric modes are chosen as an input, the

HE11 mode can see a variation in the loss seen after the gap. The phase difference

between certain 2-mode input mode combinations causes variations in the power loss

and mode content after the gap. The output HE11 power due to an input consisting

of the HE11 and HE12 modes has a significant dependence on input phase, as shown

in Figure 3-5. Figures 3-6, 3-7, and 3-8 show the same plot for a secondary mode of

HE13, HE14, and HE15, respectively. In these plots, it’s easy to see the same effect to

varying degrees.

Figure 3.2.2(a) shows the loss in the fundamental mode for gaps when L = 2a

and a two-mode input. The loss is shown versus the percentage of higher order mode

present at the input. In this figure, the phase of the secondary input mode with respect

to the fundamental mode is varied to show the wide range of loss that is possible.

Considering an input mode content of 98% HE11 and 2% HE12, the power lost in

HE11 ranges from 0.28% to 0.75% , corresponding to respective phase differences of

310◦ and 130◦. The average loss in HE11 is 0.52% (0.022 dB), the same value of loss

as when HE11 is considered individually.
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Figure 3-6: The power lost in the HE11 mode versus the phase difference between the
two input modes. The system considers a two-mode input of HE11 and HE13, L =
63.5 mm, and 170 Ghz. Maximum loss is at 300◦ and minimum loss occurs at 120◦.
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Figure 3-7: The power lost in the HE11 mode versus the phase difference between the
two input modes. The system considers a two-mode input of HE11 and HE14, L =
63.5 mm, and 170 Ghz. Maximum loss is at 288◦ and minimum loss occurs at 108◦.
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Figure 3-8: The power lost in the HE11 mode versus the phase difference between the
two input modes. The system considers a two-mode input of HE11 and HE15, L =
63.5 mm, and 170 Ghz. Maximum loss is at 272◦ and minimum loss occurs at 92◦.

The dependence of power loss in a two mode system on the phase difference

between the modes is seen in any combination of modes that has the same azimuthal

(m) symmetry. For example, an input consisting of HE11 and HE13 will also have an

output dependent on the phase between the two modes. This effect is seen in Figure

3.2.2(b). Though, the average loss in HE11 is still 0.52%, with a 2% HE13 content it

may swing from 0.15% to 0.88%, depending on the input phase. This example treats

modes of the same azimuthal symmetry (same m value). At the output port, a mode

couples only to modes of the same azimuthal symmetry. Therefore, two modes of

different azimuthal symmetry (different m values) will not interfere. For example, a

two mode input consisting of an HE11 (LP01) mode (m = 0) and LP
(o)
11 mode (m = 1)

produces an output that has no dependence on the relative phase of the modes and

will always result in a 0.52% loss in the HE11 mode power.

A three or more mode input of the same azimuthal (m) symmetry will also result in

a phase dependence. For example, an input consisting of HE11, HE12, and HE13, will

result in an output dependent on the phase relations between the modes. Results for

varying values of HOM percentage and phases are shown in Figure 3-10, where the x̂-
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Figure 3-9: For a two mode input at 170 GHz with a = 31.75 mm and L = 2a, the
percent of (a) HE12 or (b) HE13 present in the input mode mixture vs. the percent
loss in HE11 after the gap is plotted. Different phases of HE12 or HE13 have been
chosen to show the full range of swing in the HE11 power loss. The average HE11

power loss is 0.52% for both cases.
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Figure 3-10: The power loss in a gap for HE11 vs. HOM content for a three mode
input. The HOM content is split between HE12 and HE13, and the largest and smallest
HE11 power loss (due to HOM phase) is plotted for each mode split. The system is
at 170 GHz with a = 31.75 mm.

axis represents the total power in the combination of the HE12 and HE13 modes. The

HE11 power loss is dependent on the phases of both modes as well as the percentage

of power in each mode. A phase difference between HE11 and HE12 of 310◦ and HE13

of 120◦ causes the lowest possible power loss in HE11, while phases of 130◦ and 300◦

in HE12 and HE13, respectively, cause the largest possible power loss. Figure 3-10

shows the curves corresponding to these two extreme phase combinations. Both the

absolute highest and lowest loss in HE11 power occur when 30% of the HOM content

is in HE12, and 70% is in HE13. In this case, a 2% HOM content may cause a swing

in lost HE11 output power from 0.08% to 0.95% a swing that is larger than the result

from 2% in HE12 or HE13 individually.

3.3 Loss due to a Miter Bend

The loss due to a miter bend is split into three components: Diffraction Loss, Ohmic

Loss, and Misalignment Loss. Each of these losses will be discussed in this section.
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In a perfect world with infinite conductivity and parts manufactured with zero toler-

ances, diffraction loss would be the only component of loss. However, the other two

components must be considered when quantifying the loss of a practical miter bend.

The loss due to diffraction is calculated by decomposing the miter bend into a

2-dimensional system. Figure 3-11 shows this decomposition as described in [23] for

the fundamental mode in smooth-wall circular waveguides. The theory presented here

abstracts a miter bend into a theoretical four-port system, as shown in Figure 3-11(b).

The system is mathematically equivalent to the miter bend and described in detail

in [23] for a smooth-wall waveguide (though the same logic holds for a corrugated

waveguide). For the four port system, the transmission through the bend, seen at

Output 1 is due to two input powers. These two components are decomposed in

Figure 3-11(c). The wave seen at Output 1 due to Input 2 is the amount of power

able to transverse a gap-like structure, where half of the gap is still surrounded by

waveguide. Output 1 due to Input 1 is shown as half of the radiated field as Input

1 travels through a gap of the same geometry. The component of Output 1 due to

Input 1 is small and most of the power will couple to very high order modes that

do not propagate, therefore this contribution can be ignored. The first component of

Output 1 can be further abstracted. Since half of the gap-like structure is covered,

it is sufficient to say that the power lost in a gap of equivalent geometry, shown in

Figure 3-11(d), is equal to twice the power lost in the miter bend due to diffraction.

This is the basis of Gap Theory, discussed at length in [13] for a pure fundamental

mode in a corrugated waveguide. That is: the power lost in a 90◦ miter bend due to

diffraction is equal to half of the power lost in a gap when the length of the gap is

equal to the diameter of the waveguide, L = 2a. Therefore, the calculated diffraction

loss in a miter bend has already been discussed in the previous section.

Since diffraction loss is defined as the loss associated with mode conversion due to

the diffraction caused by an angular reflection, the diffraction loss can be estimated

based on Gap Theory for any angular diffraction. For a pure fundamental HE11 mode,
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Figure 3-11: (a) A radially symmetric gap with length L = 2a. (b) A miter bend
with a radius of a that can be modeled using equivalent gap theory, as described in
the text.
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diffraction loss is estimated as

Diffraction Loss = 0.195

(
λ

a sin θ

)3/2

, (3.20)

where θ is the angle of the reflection [34]. For a 90◦ miter bend, θ = π/2 and sin θ = 1.

For 170 GHz and 63.5 mm diameter waveguide, Diffraction Loss in a miter bend for

a pure HE11 mode is about 0.25%. In the previous section, the loss of the equivalent

miter bend was found to be 0.022 dB for a pure HE11 mode, this translates via gap

theory to 0.011 dB or 0.25% loss per bend.

Ohmic loss caused by reflection and seen in a miter bend is due to the heating of

a material with a surface resistance, Rs, used as the optical mirror in the miter bend.

This loss is estimated as

Ohmic Loss = 1.2
4Rs

Z0
cos α (3.21)

for an H-Plane bend, or

Ohmic Loss = 1.2
4Rs

Z0

1

cos α
(3.22)

for an E-Plane bend [34]. For the Ohmic Loss considered in this application, Rs =

2.6 × 10−7
√

f(Hz)Ω = 0.107 Ω for pure copper at 170 GHz, the impedance of the

transmission line is equivalent to the impedance of free space Z0 = 377 Ω, and the

angle of reflection off of the mirror in a miter bend is α = 45◦. Therefore, the

estimated Ohmic loss in a miter bend is 0.10% and 0.19% for an H-Plane and an

E-Plane bend respectively.

Misalignment loss is due to manufacturing errors in a miter bend. In general,

a typical machining tolerance for an abrubt change in radius or axial offset in the

waveguide will result in insignificant losses [34]. However, an angular misalignment

of the mirror in a miter bend can lead to large quantities of mode conversion for

overmoded waveguides. The loss due to mirror tilt is estimated as

Misalignment Loss = 4.26

(
aθ

λ

)2

(3.23)
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where θ is the angle of tilt of the beam as it enters the output of the waveguide [34].

A 0.05◦ mirror misalignment corresponds to θ = 0.1◦ and a Misalignment Loss of

0.42%. Alternatively, θ = 0.05◦ gives a misalignment loss of 0.105%. A reasonable

estimate for the average misalignment loss is 0.21% (for θ = 0.07◦), given the high

precision of accuracy required in the manufactured parts with tolerances less than

θ = 0.1◦.

Combining all three losses (diffraction, ohmic and misalignment), the theoretical

loss in a miter bend for the fundamental mode is expected to be about 0.61% or

0.027 dB. Though, this estimate only considers pure mode inputs, it also considers

a loss due to manufacturing errors and ohmic heating. Other modes present in the

system will change the diffraction loss seen for the fundamental mode in individual

bends, but in large systems (i.e. in ITER, with 7 miter bends in each of 20 transmission

lines) the effects of the multimode interactions should average to zero. However, small

systems (like a low-power experimental test) will be susceptible to the uncertainty

in diffraction loss for the fundamental mode due to the phase dependence of the

diffraction loss on HOM phase.

79



80



Chapter 4
Low-Power S-Parameter Analysis for

Overmoded Components

In general, the loss of overmoded components is extremely small, on the order of

0.5%, and comparable to typical errors that result using simple measurement tech-

niques. Even a small amount of higher order mode content in the system has the

ability to skew the fundamental mode loss in overmoded components by a significant

amount. Therefore, experimental measurements of loss in overmoded components

should be equivalently skewed by higher order mode content in the system. However,

we can account for the effect of higher order modes when appropriate baseline loss

measurements and data analysis procedures are implemented, beginning with the S-

Parameter Response (SPR) method presented in this Chapter and implemented in

Chapter 5.

Previous low-power measurements have attempted to measure the loss in over-

moded components. Other studies at MIT found the loss in an overmoded ITER-

specified miter bend to be 0.05 ±0.02 dB [18]. Compared to the 0.027 dB theoretical

loss for a miter bend, this measurement is acceptable, but not ideal. These loss

measurements were preformed with a fundamental rectangular guide 2-port Vector

Network Analyzer, VNA, by directly measuring the transmission through a 2 miter

bend system with 3 meters of waveguide spaced between components and mode con-

verters. The error in the measurement is due to the uncertainties in the calibration

81



measurement, the sensitivity of the VNA’s millimeter wave heads and connecting ca-

bles to movement, and the reproducibility of the measurement. The effects of higher

order modes were not considered, but about 1–2% higher order modes were present

in the experimental system.

The S-Parameter Response (SPR) technique presented in this chapter is general

and will be shown to be robust and accurate for experimental measurements of the

fundamental mode loss in individual components. The technique accounts for the

sensitivity of the measuring equipment to movement, sensitivity of the calibration

technique, reproducibility, and effect of the higher order mode content by implement-

ing a series of S-parameter measurements to determine a baseline response of the

system and the S-parameters for individual components.

4.1 S-Parameter Response (SPR)

S-Parameter Analysis is a well-established technique for measuring the transmission

and reflection of passive microwave components, as described in [30]. The low-power

analysis presented here, SPR, utilizes S-Parameter Analysis to consider the effect of

the entire system under test in measuring the transmission loss of a particular compo-

nent of the system. The SPR technique is split into 3 steps. The first step discusses

the two experimental measurements that must be preformed to various Devices Under

Test (DUTs). The second step discusses the analysis of those measurements to find

the S matrix for the DUT, considering it as a 4-port system. The third step compares

the S matrix of different DUTs to decompose the S matrix of individual components.

Through these three steps, the transmission through a single component, like a miter

bend, can be measured.

4.1.1 Step 1: Low-Power Measurements

The measurements described in this report use an Agilent PNA with a 140–220 GHz

MMW head, transmission line components produced to ITER specs by General Atom-

ics, and a mode converter/up-taper from WR-05 to the HE11 mode in 63.5 mm di-
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ameter circular waveguide. These components are depicted in Figure 4-1, where the

DUT is a 3 m, 2 miter bend system. The system is also abstracted in Figure 4-2.

For the SPR technique, a one port calibration is performed on the head of the

PNA, permitting a phase and amplitude measurement to be taken. The calibration

plane is shown in Figure 4-2. The reflection, or S11, measurement due to a matched

load and a short is taken for various equipment configurations. With these two

measurements, the S matrix of the up-taper and the DUT will be calculated.

For each series of measurements, a one port calibration was performed on the

millimeter wave head of the PNA, which calibrates both phase and amplitude. After

calibration, the cables and millimeter wave head were connected to the up-taper.

The up-taper was secured to the optical table to prevent accidental movement while

DUTs were connected. These components remained stationary for the duration of

measurements taken with that calibration.

The millimeter wave head was connected to an up-taper, such that the miter

bends will lie in the E-Plane. The 1.8 m long up-taper with a long filter attached

converts a 170 GHz signal from the fundamental TE10 mode in rectangular WR-05

waveguide to HE11 in 63.5 mm diameter corrugated circular waveguide. It is rated

from 169–171 GHz by the manufacturer, General Atomics. In previous analysis we

have measured a 98.6±0.5% HE11 mode purity after the up-taper, or 1–2% higher

order mode content.

The transmission line components meet ITER specifications for performance and

were manufactured by General Atomics. The components available are three sections

of 63.5 mm diameter corrugated circular waveguide, each 1 m long, and two miter

bends. In addition, there are 1 section each of 80, 60, and 40 cm long 63.5 mm

diameter corrugated circular waveguide. The waveguide sections are machined out

of a single piece of aluminum with inner quarter-wavelength corrugations. The miter

bends, shown in Figure 4-3 are machined out of a block of aluminum and have a cop-

per mirror of optical quality at 45◦±0.1◦. Each miter bend has 42 cm of corrugated

waveguide extending from each end to assist with attachment to waveguide compo-

nents. General Atomics transmission line components are attached with 20 cm long
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Figure 4-1: The system which was implemented during SPR analysis. The PNA was
used to measure the S11 due to a short with a DUT consisting of 3 meters of waveguide
and 2 miter bends.

Figure 4-2: The General set-up for measurements taken. The Device Under Test
(DUT) consisted of various 63.5 mm diameter components. The S11 system measure-
ment accounts for the effects of the up-taper and the DUT.

Figure 4-3: A miter bend manufactured to ITER specifications and used in low-power
testing.
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(a) (b)

Figure 4-4: Measurements were taken by applying (a) a matched load using Eccosorb
and (b) a short to the end of the 63 mm diameter waveguide.

clamps that assure precision alignment with no angle and/or offset between compo-

nents. Precision lab jacks are used to assure the appropriate height of all components

and eliminate any issues that may result from the sagging of waveguide or undue

stress between components. With these components, it is possible to achieve highly

accurate alignment in a clean low-power laboratory setting, as will be evident in the

reproducibility of our results in Chapter 5.

To begin, measurements were taken with the goal of calculating the transfer,

or S, matrix of the entire system being measured (up-taper and 63 mm diameter

waveguide components). In order to do this, two reflection, or S11, measurements

are taken. The first measurement is with a short at the end of the DUT, which

reflects all power at the end back through the DUT and up-taper. The short is a

machined piece of aluminum which fits on the end of the 63.5 mm diameter DUT, as

shown in Figure 4-4(a). The S11 due to the short measurement can be estimated as

the transmission through the DUT and up-taper with twice the loss in the system,

such that S12[system] ≈ √
S11[measured]. However, in reality, reflections occur in

the system. Therefore, a second measurement is taken with a matched load attached

to account for the reflected power. The matched load is implemented by allowing

the DUT to be unobstructed at the end of the line and placing Eccosorb to prevent

extraneous reflections from the test area, as shown in Figure 4-4(b). The matched
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Figure 4-5: Diagram illustrating the 4 port system S-matrix and indicating the inputs
and outputs of a system.

load absorbs the power in the system, therefore the S11 measurement due to a matched

load is an indication of the reflections which occur in the system.

4.1.2 Step 2: S-Matrix Calculation

To analyze the data from an individual set-up, the intrinsic S11 and S12 of that set-

up (including the up-taper and all 63.5 mm transmission line components) can be

calculated. The 4-port system is illustrated in Figure 4-5. It estimates no conversion

between modes of the system, however we will deal with that error when considering

the baseline measurement in Step 3.

In general, for a 4-port system the ports are related through the S-matrix by

b̄ = ¯̄Sā, (4.1)

where

¯̄S =

⎡
⎣ S11 S12

S21 S22

⎤
⎦ . (4.2)

Since the components in this system are passive, we estimate this as a reciprocal

system, such that

¯̄S =

⎡
⎣ S11 S12

S12 S11

⎤
⎦ (4.3)

86



and equation (4.1) decomposes into

b1 = a1S11 + a2S12, (4.4)

and

b2 = a1S12 + a2S11. (4.5)

For further details on S-parameters see [30].

In Figure 4-5, a1, b1 and a2 can be defined for both the short and load measure-

ment. In each measurement a1 is calibrated to be 1, and b1 is the S11 that has been

measured due to the short or load attached, now referred to as b1S and b1L, respec-

tively, in order to avoid confusion. For the short, a2 = b2. Whereas, for the load

a2 = 0 and b2 remains unknown. Using these assigned values, S11 of the system is

found via equation 4.4 considering a matched load input, such that

S11[system] = b1L. (4.6)

Knowing S11 of the system, S12 of the system can be found via equation 4.5 and the

short measurement,

S12[system] =
√

(b1S − S11[system]) (1 − S11[system]). (4.7)

Note that these calculations use a linear magnitude of the measurements, b1L and b1S .

In the limit of b1L ≈ 0 (i.e. no reflections), S11[system] ≈ 0 and S12[system] ≈ √
b1S ,

as indicated previously. However, for completeness, the effect of the matched load

will be kept.

4.1.3 Step 3: S-Matrix Decomposition

Using a similar method, the S-parameters of an individual component can be found.

Consider a system under test consisting of two components, as illustrated in Figure

4-6. If the S-parameters of the first component are already known (through the

87



Figure 4-6: Diagram illustrating the cumulative S parameters of a two-segment sys-
tem.

calculations of Step 2), the S-parameters of the second component can be calculated.

For example, the S-parameters of just the up-taper, SU , may easily be determined by

the analysis presented in Step 2 when no components are attached to the up-taper

(that is, the DUT is nothing).

In this system, the same short and matched load measurements have been taken as

in Step 2; the same assignments can be made to a1, b1, and a2 for these measurements.

In the case that follows, only the matched load measurement has been considered, for

simplicity. For a reciprocal system,

b1 = a1S11U + b3S12U (4.8)

a3 = a1S12U + b3S11U (4.9)

b3 = a3S11DUT + a2S12DUT (4.10)

b2 = a3S12DUT + a2S11DUT (4.11)

Knowing SU , this series of equations can be solved for b3 and a3, such that

b3 =
b1L − S11U

S12U
, (4.12)

and

a3 = S12U +
b1L − S11U

S12U
S11U . (4.13)
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In addition, b2 can also be defined using the S parameters of the entire system,

b2 = S12[system]a1. (4.14)

where S12[system] is found via Step 2. With these values, S11DUT and S12DUT are easily

found through equations (4.10) and (4.11), considering that a2 = 0 for a matched load,

S11DUT = b3/a3, (4.15)

S12DUT = b2/a3. (4.16)

In the limit of small reflections, S11DUT ≈ 0 and

S12DUT ≈ S12[system]

S12U
. (4.17)

This is a logical approximation and will produce accurate results. However, since the

problem at hand requires high accuracy, we will use the full calculation for our data

analysis.

4.2 Experimental Configuration

The SPR technique was used to design our experiment. For example, consider a

simple system consisting of an up-taper and a 1 m length section of 63.5 mm waveg-

uide. With a previous system measurement for just the up-taper, the S-parameters

for that device alone, S11UT and S12UT , can by found using equations (4.6) and (4.7)

respectively. With those values, the S-parameters associated with the 1 m length sec-

tion of waveguide can be found via equations (4.15) and (4.16). Ideally, the straight

waveguide section will result in full transmission, i.e. S11K = 0 and S12K = 1. Any

discrepancy in this measurement resulting from higher order modes will need to be

accounted for in a baseline measurement, as discussed in the proceeding chapter. In

general, Step 3 of SPR can be performed multiple times when dealing with large

systems of components or the subtraction of a baseline measurement. This iterative
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process decomposes the measured values into S-parameters of the individual compo-

nents in a complex system.
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Chapter 5
Experimental Power Loss Measurements

Two low-power experiments were performed using the SPR method. The first ex-

periment calculated the loss due to a miter bend with high precision. The second

experiment calculated the loss due to a gap in waveguide which demonstrates the

accuracy of the SPR method.

5.1 Loss Due to a Miter Bend

The loss due to a 63.5 mm diameter corrugated cylindrical miter bend was found

via the SPR method discussed in Chapter 4. The measurements exhibited certain

artifacts that are investigated in this section and accounted for during data analysis.

There was a natural frequency dependence to the components (slow varying ripple),

a strong resonant behavior due to reflections in the up-taper (rapidly varying ripple)

and a DC shift with the addition of waveguide sections (mode-beating). We are

interested in the average loss over the frequency of interest so measurements were

taken over a 2 GHz range centered at 170 GHz and the final loss value is reported

as the average of the band from 169.5–170.5 GHz in order to account for the effect

of the slowly varying ripple. The rapidly varying ripple does not affect this loss, and

was filtered out during FFT processing. However, the DC shift due to mode-beating

with the addition of waveguide was accounted for in the SPR processing of data as it

produced a noticeable shift in the signal that was not a result of loss in a miter bend.
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Figure 5-1: Photo of the experimental set-up for measuring the loss in a miter bend.
The set-up uses three 1-m sections of straight waveguide and 2 miter bends.

Figure 5-2: Diagram of 2 miter bends and 3 m of waveguide under test. The experi-
mental set-up of this diagram is shown in Figure 5-1.

The uncertainty all corrections, particularly the mode-beating correction, is included

in the error of our measurement. These processes are discussed in detail below.

5.1.1 Experimental Design

To measure the loss in a miter bend, the experimental system consisted of 3 1-m

length sections of waveguide and 2 miter bends. The experimental set-up is shown in

Figure 4-1 and a diagram depicting the DUT is shown in Figure 5-2.

The S matrix for the entire system can be calculated, SSY S. With a previous mea-

surement considering just the up-taper, the S matrix for an up-taper is also known,
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Sup. In addition, the transmission through 3 m of waveguide can also be found using

SPR, S3m. For reference, an experimental set-up 4 m of straight waveguide is shown in

Figure 5-3. The theoretical loss in a straight section of 63.5 mm diameter corrugated

waveguide is 1.56×10−4 dB/m (or 0.18×10−4 Np/m) for the HE11 mode and less than

0.001 dB/m for all modes of interest [31]. This loss is too low to be accurately mea-

sured, even using the improved SPR technique. Therefore, if there is only a single

mode in the system, there should be zero reflection and full transmission through the

component (an identity S-matrix). However, if there are higher order modes in the

system, the S matrix of the 3 m of waveguide is not measured as ideal due to the cou-

pling of the higher order modes through the mode-converter for measurement. This

effect of higher order modes on the detected transmission through straight sections

of waveguide means that the S-matrix of the straight sections of waveguide is not the

identity matrix and must be taken into account as the baseline measurement for the

original system considered. Since the system can be approximated as reciprocal and

contains only passive components, the S-matrices of individual components can be

combined and rearranged, such that SSY S = Sup × S3m × S2miter.

Therefore, the S matrix of 2 miter bends, S2miter, may be calculated via the SPR

method. First, the effect of the up-taper will be taken care of, such that in Step 3

SU = Sup and SDUT = S3m × S2miter. Next, the effect of the baseline will be taken

care of, such that in Step 3 SU = S3m and SDUT = S2miter. Since S2miter accounts for

the loss of two miter bends, to find the loss in an individual miter bend,

Loss per Bend =
1 − S12,2miter

2
(5.1)

In addition, the reproducibility error (in dB) for S12,2miter is also divided by 2 because

there were two miter bends in the system. Therefore, it is beneficial to measure the

loss due to two miter bends as opposed to just a single miter bend because the

error bar reduces significantly for the measurements that used 2 miter bends in the

experimental set-up.

With this process in mind, two series of measurements are taken for any loss
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Figure 5-3: Photo showing 4 m of straight waveguide under test. The measurement
of the loss due to straight sections of waveguide was used to calculate the baseline
measurement and the uncertainty error of S3m.
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measurement. The first series considers the addition of different lengths of waveguide

to the up-taper to determine the trend of the baseline measurement. This process is

necessary to quantify the baseline measurement, S3m as well as the error associated

with that measurement. The second series utilizes the set-up in Figure 5-1 and is

used to determine the S12 of 2 miter bends. With these measurements, the loss due

to a single miter bend was determined.

5.1.2 FFT processing

The processing of measurements required limiting the range of frequencies used by

applying a low pass filter to the data. S11 measurements for the short and matched

load were taken over a range of frequencies from 169–171 GHz. After processing, only

the range from 169.5–170.5 GHz was considered, as seen in Figure 5-4(a) which shows

the short measurement for the up-taper. Figure 5-4(b) shows the FFT of the same

measurement, as well as the filter that was applied to preserve the DC and slowly

varying ripple (this effect is an inherent property of the system). There is a peak in

the FFT that corresponds to a reflection distance of 1.8 m, which is also the length

of the up-taper. Considering the sensitivity of the small rectangular fundamental

WR-05 waveguide, it is reasonable to assume that a reflection occurs close to the

millimeter-wave head. Knowing the cause of this reflection, the FFT filter may be

applied without altering the results of the measurement.

Alternatively, averaging could be performed when taking the S11 measurements

from the PNA. However, the FFT filter offers a higher level of accuracy for the high

frequency filter and does not obscure the low frequency components of the signal.

Figure 5-5 displays the same FFT for measurements with the short connected to

the up-taper, as well as the short connected to the up-taper with 1, 2, and 3 m of

waveguide attached. In each FFT, it is seen that the peak which corresponds to the

rapidly varying ripple occurs at a distance equivalent to the length of the system

under test. For example, the peak in the FFT for the up-taper and 3 m of waveguide

occurs at 4.8 m. Since the rapidly varying ripple was caused by the up-taper and was

an intrinsic component to the set-up of the experiment, a low pass filter is applied
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Figure 5-4: (a)The FFT for the measured data for just the up-taper (0 m of waveg-
uide) with the short applied, indicating the filter (in pink) that has been applied, and
(b) the corresponding magnitude vs. frequency plot of the same data before and after
the filter.
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Figure 5-5: The FFT of the calculated S12 for 0-3 m sections of waveguide. The x-axis
has been scaled to indicate the length between the reflecting components.

to all of the measurements. This filter preserves the DC signal as well as a slowly

varying ripple.

For the next steps, the data was processed over the entire range of frequencies in

order to preserve accuracy. However, for the singular values of S12 and S11 reported at

170 GHz, the final calculation was averaged from 169.5-170.5 GHz. (Data and FFT

calculations were taken over 169–171 GHz to eliminate some data processing effects

in the final 1 GHz bandwidth.) The standard deviation of the data over the 1 GHz

bandwidth was taken into account in the error of the measurement, but was small

when compared with other errors.

5.1.3 Baseline Measurement

In the first series, measurements were taken using 0–4 m of straight waveguide (in 20

cm increments) after the up-taper. Knowing the S-matrix of the up-taper, Sup, the S-

parameters of just the straight sections of waveguide are calculated. Only the S-matrix
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Figure 5-6: The transmission measured for the up-taper and straight sections of
waveguide from 0–3m. The fit curve is a possible combinations of modes that has
been extended beyond measurements to show the periodicity of the transmission with
length of waveguide attached. The -1.86 dB offset is due to the efficiency of the mode
converter/up-taper; the ripple around -1.86 dB is due to higher order modes in the
system.

of the 3 m section, S3m, is used to calculate the loss in a miter bend. However, the

S-parameters of the other straight sections must be calculated in order to determine

the level of uncertainty in the S3m baseline measurement. The S-parameters of all

straight sections are used to determine a component of the error due to the final

calculation of the loss in a miter bend. Ideally, the transmission through straight

sections of waveguide is close to S12 = 0 dB (or full transmission) [31]. However, due

to our method of measurement, the transmission measured through straight sections

of waveguide will be dependent on the mode content of the signal.

The measured S12 (including up-taper and straight sections) is averaged over

169.5–170.5 GHz and is reported in Figure 5-6 for two different days of experiments. A

slight variation is seen in the S12 values that can be attributed to higher order modes

in the overmoded waveguide. If the system were ideal and transmitting in pure HE11

through the overmoded waveguide sections, adding a meter length of waveguide would

not change the S12 of the system. However, it is likely that the slight content of higher

order modes cause this variation in our measurements.
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Mode Xmn Δk (1/m) λB (m) % Content
LP01 2.405 — — 99.45%
LP11 3.832 1.24 5.07 0.10%
LP21 5.136 2.87 2.19 0.11%
LP02 5.520 3.44 1.83 0.17%
LP31 6.380 4.87 1.30 0.04%
LP12 7.016 6.06 1.04 0.12%
LP22 8.417 9.08 0.70 0.01%

Table 5.1: A possible mode content for the observed mode-beating in Figure 5-6.

Utilizing the theory discussed in Section 3.1, the curve was fit with a combination

of the mode beating due to HE11 with the 5 lowest order modes of the system, as shown

in equation (3.7). The curve seen in Figure 5-6 was generated by considering 0.55%

higher order mode conent in the system alongside the HE11 mode, the breakdown of

the particular mode content in the Figure is shown in Table 5.1. This table emphasises

the Δk and beat wavelength, λB between the higher order modes and HE11. In

addition, there are oscillations between the higher order modes in smaller quantities.

By no means does Table 5.1 show the only possible combination of modes to

fit the measured data well, but the periodicity of the transmission measurements

corresponds well to the beat wavelengths with these combinations. In addition, the

amplitude of the oscillation correlates well with any mode content considering about

0.25–1% higher order modes. Particularly, the LP02 (or HE12) mode beating with

HE11 corresponds to the frequency of one of the oscillations seen.

Clearly, the mode content associated with these higher order modes is small and

the frequencies of oscillations are clustered from 0.5–5 m making resolution of the data

difficult. More data points would be needed to generate enough data to accurately

determine the mode content of the system. Unfortunately, our experimental set-up

only allowed for about 3 m of straight waveguide to be under test at once. Therefore,

no further conclusions can be drawn save for the fact that we have about 0.25–1%

higher order modes in the system. The method is not robust enough to account for the

small effects of the higher order modes after conversion to fundamental rectangular

waveguide at the end of the up-taper.

Unfortunately, a calculation of the mode content based on mode beating can only
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Figure 5-7: The loss in a single miter bend is found from the average S12 for several
different measurements taken with two miter bends in the system. Different configu-
rations were used, however there is no visible trend between types of measurements.

be considered a qualitative analysis, due to a lack of data points and the Nyquist

sampling limit. Therefore, the standard deviation for the S-parameters for all straight

waveguide sections was used to calculate the error due to the baseline adjustment with

SPR.

5.1.4 Results

The S12 of a single miter bend was found from the second series of measurements.

These measurements tested two miter bends with three 1-meter long sections of waveg-

uide. In this process, the S12 was calculated for two miter bends using the method

described previously. The averages for all measurements are shown in Figure 5-7.

These results were adjusted for a single miter bend. The error bars are determined

by the standard deviation of the determined values for S12,2miter (reproducibility er-

ror) and the standard deviation between the 0–3 m measurements, as discussed in the

previous subsection. Due to the method of measurement using two miter bends, the

error from the 0-3 m measurements is only half as much per bend as was calculated.
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Gap in WaveguideGap in Waveguide

Figure 5-8: The experimental set-up to measure the loss due to a gap in waveguide.
Alignment between the transmitting and receiving waveguides is achieved with a
stationary optical rail which allows the waveguides to move in the ẑ-direction and the
length of the gap to be easily variable.

Figure 5-9: A diagram of the experimental set-up for a gap in waveguide as shown in
Figure 5-8.
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From these measurements and calculations, we have determined that the loss in

a GA miter bend produced to ITER specifications is 0.022 ±0.008 dB, as shown

in Figure 5-7. This value accounts for the error due to the reproducibility of mea-

surements. It also accounts for the error due to the uncertainty in the transmission

through straight sections of waveguide which arises with higher order modes. This

value is consistent with theory, which predicts 0.027 dB loss per bend.

5.2 Loss Due to a Gap in a Waveguide

5.2.1 Experimental Set-Up

To determine the loss in a gap of waveguide, the same procedure was used. Except,

the miter bends were replaced with a single gap. The experimental set-up is shown

in Figure 5-8, with a diagram in Figure 5-9 for further explanation. The transmitting

and receiving waveguide were kept 1 m long for simplicity of measurements, and the

length of the gap was easily variable. reflections near the gap were negligible.

The S-parameter analysis was the same as for the miter bend loss measurement.

For each series of gap measurements, a baseline S11 measurement was taken for both

a short and a matched load with 2 meters of waveguide attached to the up-taper.

Then, for each length of gap, an S11 measurement was taken for a short attached to

the end of the mobile section of waveguide shown in Figure 5-9. The matched load

measurement was indistinguishable from the baseline matched load measurement, so

the baseline measurement for the matched load S11 was used for all gap lengths. This

approximation was taken to eliminate errors due to misalignment when exchanging

the short for a matched load at the end of the waveguide.

As was done for the miter bend loss measurement, an FFT was performed on all

measured data to remove the high frequency ripple, and the data was averaged over

a 1 GHz bandwidth around 170 Ghz to remove the low-frequency variations. The

baseline measurement was taken for 2 meters of straight waveguide. Therefore, the

measured S-matrix of the system seen in Figure 5-9 was SSY S = Sup × S2m × Sgap. A
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Figure 5-10: The average loss due to a gap in waveguide vs. the length of the gap
under test. Error bars of 0.008 dB are shown. The theoretical loss in a gap for the
fundamental mode is also shown (from Figure 3-3).
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Figure 5-11: Theoretical loss in a gap for the HE11 mode versus length of the gap
specifically calculated for the loss seen in the reflected measurement. Higher order
mode content is considered in the HE12 mode only with a phase of 0 or π between
the modes. Oscillations have a wavelength of 1.76 mm (170 Ghz).
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Figure 5-12: Theoretical loss in a gap for the HE11 mode versus length of the gap
specifically calculated for the loss seen in the reflected measurement. Zoomed image
of Figure 5-11 for 0–4 cm length of gap.
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Figure 5-13: Theoretical loss in a gap for the HE11 mode versus length of the gap
specifically calculated for the loss seen in the reflected measurement. Zoomed image
of Figure 5-11 for 4–7 cm length of gap.
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two-step decomposition was performed, as described in the previous section for the

miter bend measurement, to determine the loss due to the gap.

5.2.2 Results

The loss due to a gap of waveguide is shown in Figure 5-10 alongside the theoretical

loss for the pure HE11 mode. Theory and measurements are in good agreement.

However, a pronounced ripple in the measured data is seen. It is suspected that

higher order modes are responsible for the ripple, but the effects of higher order

modes which were investigated occur with a much shorter wavelength.

Considering the theory from Chapter 3, higher order modes can alter the loss seen

in a gap. In fact, just 0.5% higher order mode has the ability to significantly alter the

loss seen in a gap. Since the loss is determined via a reflection, S11, measurement, the

phase between HE11 and higher order modes varies based on the length of the entire

system. That is, the loss due to the gap changes between the transmitted, +ẑ, and

reflected, −ẑ, traveling signals; the reflected signal phase depends on the length of

the system. Therefore, a ripple occurs in the calculated loss in a gap. The amplitude

of the ripple is determined by the percentage of higher order mode content and the

frequency of the ripple is the frequency of the system, 170 GHz. This ripple is shown

in Figures 5-11, 5-12, and 5-13 for different combinations of HE11 and HE12.

The measured loss in a gap was determined to be accurate and in good agreement

with theoretical calculations, as shown in Figure 5-14. Though the wavelength of the

oscillations of the theoretical loss in a gap with higher order modes, λ = 1.76 mm,

cannot be fit to the measured data, the maximum and minimum theoretical loss for

0.5% HE12 was determined and is shown in Figure 5-14 alongside the measured loss.

The wavelength of the unaccounted for ripple is about 7 cm and the cause of the ripple

is currently unknown. From the data and theoretical analysis, it’s likely that some

higher order modes are present in the system at a power level of less than 1%. A more

accurate analysis cannot be made at the time. Regardless, an accurate measurement

of the loss in a gap has been achieved, validating the accuracy of the SPR technique

for measuring losses due to overmoded waveguide components.
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Figure 5-14: The measured loss in a gap versus length of gap (from Figure 5-10) with
theoretical curves that consider 0.5% HE12 higher order mode content in the system.
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Chapter 6
Radiation of a Wave at the End of a

Waveguide

In discussion of the theoretical loss in a gap of waveguide (See Chapter 3), the electric

field in the gap is analytically calculated through Fresnel diffraction integrals at the

end of the gap. However, the form of the electric field as it propagates inside of the

gap is not discussed. Consider a system like a gap, but with the receiving waveguide

removed, such that the wave is free to radiate from the end of a waveguide. This

configuration is useful when considering the launchers at the end of a transmission

line system, like the launchers necessary for electron cyclotron resonance heating in

ITER.

6.1 Radiation of Single Modes

The electric field for a single mode propagating in a gap was found in Chapter 3 to

be

�E⊥
g,mn(r, φ, z) = ŷ

j2πkA

z
√

Nmn

ejmπ
2 ej kr2

2z cos (mφ)

∫ a

0

Jm

(
Xnr0

a

)
Jm

(
krr0

z

)
ej

kr2
0

2z r0dr0

(6.1)

(reproduced from equation (3.14)), where z is the distance from the end of the waveg-

uide.
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Figure 6-1: The HE11 mode for 170 GHz as it propagates outside of a 63.5 mm
diameter waveguide. The field is shown at 20, 30, and 40 cm after the end of the
waveguide.
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Figure 6-2: The on-axis normalized power of the HE11 mode as it propagates outside
of a waveguide. A Fresnel Spot is seen in the peaking of the power.
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Figure 6-3: The on-axis power of the HE11 mode as it propagates outside of a waveg-
uide compared to the propagation of a Gaussian beam with various waist sizes, w0.

Equation (6.1) can be evaluated anywhere after the waveguide. Figure 6-1 shows

the on-axis power for HE11 mode (at r = 0) as it radiates after the end of the

waveguide. Note that a Fresnel spot (a peak in the power) is seen for the HE11 mode.

That is, the power at the center of the beam increases before decreasing, seemingly

against intuition, however the phenomenon is documented to occur for large a/λ ratios

[20]. The Fresnel Spot is emphasized when the on-axis (r = 0) power is plotted, as

seen in Figure 6-2. All HE1m modes will also have the same Fresnel Spot behavior,

however the integral could be calculated for any LPmn mode radiating from the end

of the waveguide and the same peaking (though not on-axis) will be observed. The

radiation pattern is compared to the propagation of a Gaussian beam in Figure 6-3.

In this figure, the numerical simulation approaches a Gaussian beam propagation

pattern about 1.5 m after the end of the waveguide. The Fresnel diffraction of an

HE11 mode approaches the distribution of a Gaussian beam with w0 ≈ .70a. Previous

calculations have found that a Gaussian beam with a w0 = 0.64a couples from free

space into the HE11 mode of a waveguide with radius a with minimal losses [29].

The slight discrepancy seen here is due to the numerical limitations of the calculation

when considering large values of z.
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Figure 6-4: A wave radiating from the end of a waveguide at z1 has a centroid of
power with an offset, x0(z1), and a tilt angle of propagation, αx(z1), as defined here.

6.2 Constant of the Motion for Tilt and Offset

The following section is adapted from Kowalski et al. 2010, in review [21].

Considering the launching of a wave at the end of a transmission line system, it

is useful to consider any angle or offset that may occur in the beam as it leaves the

waveguide. If a single mode is propagating on the line, the mode will reach the end of

the line such that the fields are centered on the waveguide. The radiation pattern at

the end of the guide can be calculated in the near and far fields. For a single mode,

the direction of propagation will always be centered on and parallel to the waveguide

axis. When two or more modes propagate down the transmission line, it is no longer

true that the field pattern is, in general, centered on the waveguide axis. The fields

will radiate from the end of the waveguide, but the propagation angle will no longer,

in general, be parallel to the waveguide axis. In this section, we derive a simple new

result for the propagation of two modes that shows a relationship between the tilt

and offset at the terminus of a corrugated waveguide transmission line.

The problem is illustrated in Figure 6-4, where the waveguide ends at a particular

location of the ẑ-axis, z1. When a wave propagates outside of a waveguide, the

centroid of power has a particular tilt angle, αx,y(z), and offset, x0(z) and y0(z), from

the center, as illustrated in Figure 6-4. These two propagation parameters (tilt angle

and offset) define the wave after the waveguide and quantify the centroid of power.

The offset and tilt angle of propagation are controlled by the mode content of

the wave in the waveguide. A two-mode content is characterized by two parameters,

the relative amplitude and phase difference between the modes. For a pure mode

leaving a waveguide, the centroid of the mode power is always on axis (x0, y0 = 0)
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and the mode has a constant flat phase front (αx,y = 0). However, when two modes

propagate, the power centroid will generally be off-center from the axis and the phase

front will be tilted by an angle.

A conservation theorem expressing the relationship between tilt and offset for two

propagating LPmn modes is derived. For two modes, the electric field is defined as

E(x, y, z) = C1(z)um1n1(x, y) + C2(z)um2n2(x, y). (6.2)

Here, Cp (where p = 1, 2 indicates the first or second mode of the system) is a complex

variable indicating the amplitude and phase of the modes as

Cp(z) =
√

Ape
j(kz,pz1+θp). (6.3)

For the pth mode, Ap is the percentage of power in the mode, kz,p is the wavenumber

in the ẑ-direction, and θp is the phase of the mode at z1 = 0. Also, umpnp(x, y)

is the normalized field pattern of each mode as indicated in equation (2.64), with

appropriate substitutions for r and φ to convert to the Cartesian coordinate system.

The offset and propagation angle in the x̂-direction are defined as

x0(z1) = 〈x(z1)〉 =

∫∫
E∗(x, y, z1)xE(z, y, z1)dxdy, (6.4)

αx(z1) =
〈kx(z1)〉

k
=

−j

k

∫∫
E∗(x, y, z1)

∂E(x, y, z1)

∂x
dxdy. (6.5)

With the electric field defined for this problem, offset can be expressed as

x0(z1) =

∫∫
xC1C

∗
2um1n1u

∗
m2n2

dxdy +

∫∫
xC∗

1C2u
∗
m1n1

um2n2dxdy, (6.6)

and reduced to

x0(z1) = 2Re (C1C
∗
2) b12. (6.7)
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The propagation angle can also be expressed as

αx(z1) =
j

k

(∫∫
C1C

∗
2um2n2

∂um1n1

∂x
dxdy −

∫∫
C∗

1C2um1n1

∂um2n2

∂x
dxdy

)
, (6.8)

and reduced to

αx(z1) = 2Im (C1C
∗
2) d12. (6.9)

The variables b12 and d12 are mode-specific integrals where

b12 =

∫∫
xum1n1um2n2dxdy (6.10)

and

d12 =
−1

k

∫∫
um2n2

∂um1n1

∂x
dxdy. (6.11)

The offset and angle in the ŷ-direction is similarly found with x → y and y → x.

Note that an angle and offset only occur for modes where m2 = m1 ± 1; in all other

cases, b12 and d12 evaluate to zero.

Due to the dependence on real and imaginary parts of the complex magnitudes, it

is seen that the offset and angle change with the beating, or phase difference, between

modes as the fields propagate. It is useful to define the offset and tilt as sinusoidal

functions dependent on z1 by using Euler’s identity such that,

x0(z1) = xmax cos((Δk)z1 + θ0) (6.12)

αx(z1) = −αmax sin((Δk)z1 + θ0) (6.13)

In this case, (Δk)z1 indicates the phase difference between the modes and θ0 is the

phase difference at the arbitrary point z = 0 between the modes. The maximum

possible offset and angle for a combination of two modes are defined as

xmax = 2b12 |C1C
∗
2 | (6.14)
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Figure 6-5: Maximum (a) offset and (b) tilt angle vs. HE11 percent content (Ap in
equation (6.3)) for a combination of HE11 and LP11 modes.

and

αmax = 2d12 |C1C
∗
2 | . (6.15)

In addition, it can be inferred that xmax and αmax occur when C1C
∗
2 is either purely

real or purely imaginary, respectively.

Equations (6.12) and (6.13), together with equations (6.14) and (6.15) can be

combined to form an expression for tilt and offset that is independent of location (z1)

on the transmission line. That is, the expression for tilt and offset may be combined

to form a constant of the motion:

(
x0(z1)

b12

)2

+

(
αx(z1)

d12

)2

= 4 |C1C
∗
2 |2 . (6.16)

The two governing parameters of the system are the percent split and phase difference

between the two modes.

To illustrate this constant of the motion, we consider the common two mode

combination of HE11 and LP
(e)
11 modes. In this case, b12 and d12 are evaluated as

b12 =

√
2

a2J1(X0)J0(X1)

∫ a

0

J0

(
X0r

a

)
J1

(
X1r

a

)
r2dr, (6.17)

d12 =
λX0X1√

2πa (X2
1 − X2

0 )
, (6.18)

where X0 = 2.405 and X1 = 3.832. This equation reduces to b12 = 0.329a and
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Figure 6-6: The centroid offset and tilt angle for an input of 80% HE11 and 20% LP
(e)
11

in a waveguide of radius a = 31.75 mm at 170 GHz. f(αx, x0) plots equation (6.19).
A 2π phase difference corresponds to z1 = 5.07 m.
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Figure 6-7: The centroid offset and tilt angle for an input of 90% HE11 and 10% LP
(e)
11

in a waveguide of radius a = 31.75 mm at 170 GHz. f(αx, x0) plots equation (6.19).
A 2π phase difference corresponds to z1 = 5.07 m.
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d12 = 0.233λ/a. For a = 31.75 mm and λ = 1.76 mm (170 GHz), the parameters

evaluate to d12 = 0.74◦ and b12 = 10.45 mm. Figure 6-5 shows the maximum angle

and offset for an input of these two modes as defined in equations (6.14) and (6.15)

versus the percent split between the two modes, the only variable parameter which

will change the maximum angle and offset. Figures 6-6 and 6-7 show the angle

and offset due to an input with 80% HE11 and 20% LP11 or 90% HE11 and 10%

LP11, respectively, versus the phase difference between the modes, the second variable

parameter. For these two modes, a phase difference of 2π corresponds to z1 = 5.07 m.

Due to interference effects, the power in the two modes propagates in the waveguide

with sinusoidal oscillations in both tilt and offset, dependent on phase. By relation to

the beat frequency between the two modes, the phase dependence can be quantified

as the location in the waveguide where it is terminated and the wave is allowed to

radiate into free space, θ = (Δk)z1+θ0. Figure 6-6 has a larger split between the mode

contents than Figure 6-7, causing a larger amplitude of offset and angle oscillations.

In both figures, the oscillations are out of phase by 90◦ and combine (using (6.16))

to form a constant of the motion. In both figures we calculate f(αx, x0), where

f(αx, x0) =
1

4 |C1C
∗
2 |2

[(
x0(z1)

b12

)2

+

(
αx(z1)

d12

)2
]

. (6.19)

and show that it is unity for all phases. Other percent splits between HE11 and LP11

will behave in the same pattern. In addition, other two-mode combinations that

result in a centroid offset will behave similarly, i.e. modes that vary by one azimuthal

index will follow the same pattern as the HE11 and LP11 combination illustrated here.

This theoretical evaluation shows that higher order modes in a transmission line

system will be a problem for launching electromagnetic waves with high accuracy

at the end of the system. Fortunately, the uncertainties in the launching will be a

semi-predictable phenomenon due to the constant of the motion discussed in equation

(6.16). This conservation theorem limits the maximum phase and offset that known

percentage of higher order modes can cause in the launched wave.
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Chapter 7
Conclusions

This thesis has presented a complete theory and low-power experimental measure-

ments for the loss in a miter bend and a gap in overmoded corrugated cylindrical

waveguide. The experimental measurements agreed well with theory. The low-power

experimental SPR technique employed in this thesis is general and has proved to be

robust for reliably measuring ultra-low loss in overmoded waveguide components.

7.1 Discussion

The theory presented in this thesis deals with higher order modes in these compo-

nents and suggests an alternative formulation of the modes in corrugated cylindrical

waveguide—linearly polarized, LPmn modes—which form an orthonormal basis set.

The LP modes ensure that the polarization of the fields when theoretically considered

is consistent with experimental polarization of the electric field when a linearly polar-

ized gyrotron input is used (as is the case with high power microwave experiments).

Using the LP modes formulated in this thesis, the loss due to a gap in waveguide

and a miter bend was considered. It was found that the loss for the fundamental

mode in these components was dependent on the presence of higher order modes of

the same azimuthal symmetry. For these higher order modes, the loss was dependent

on the phase difference between the higher order mode and the fundamental mode;

on average, the diffraction loss in the fundamental mode in a miter bend was 0.11 dB,
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or 0.25%. The average loss is independent of higher order mode content. The total

theoretical loss in a miter bend was calculated to be 0.027 dB, or 0.61%, taking into

account ohmic heating and misalignment errors.

The S-Parameter Response (SPR) technique was used in low-power experiments to

measure the loss in two different components. For a miter bend manufactured to ITER

specifications, 63.5 mm diameter waveguide with quarter-wavelength corrugations

operating at 170 GHz, the loss was measured to be 0.022 ± 0.008 dB. This is in good

agreement with theory. In addition, the loss measured due to a gap in waveguide was

shown to agree well with theoretical loss in a gap, especially when a small amount

(0.5%) of higher order modes are considered in the theoretical calculation. These

experimental measurements show that the SPR technique is robust.

7.2 Future Work

The application of this work, the ITER transmission line system, has many compo-

nents in the system, such as polarizers and switches. It would be useful to measure

the loss in these components using the SPR technique, so that a better understanding

of the losses in the transmission line system may be determined. In addition, the error

associated with the miter bend loss measurement could be reduced by considering dif-

ferent configurations of the experimental set-up and by enhancing our understanding

of the higher order mode content on the line via the baseline measurement.

It would also be useful to generate a simple way to employ the SPR technique

for on-site measurements. In many high-power, high-frequency experiments, large

losses on transmission line components are a significant problem. An easy on-site

measurement and trouble-shooting technique would allow for these high losses to be

reduced.
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